Chemical- and Viral-Based Transfection Methods

Print

概要

This section provides information on chemical transfection methods including liposome-meditated transfection, calcium phosphate, and viral mediated delivery.

Related Topics: Instrument-Based Transfection Methods, Posttransfection Analysis of Cells, and Cell Counting Methods.

 

Methods of Transfection

Method Function Recommended Cells Products
Lipid-mediated Uses lipids to cause a cell to absorb nucleic acids; transfer genetic material into the cell via liposomes, which are vesicles that can merge with the cell membrane Immortal cells, adherent (attached), or suspension cells TransFectin™ Lipid Reagent

SiLentFect™ Lipid Reagent for RNAi
Viral vector (for example, retrovirus, lentivirus, adenovirus, or adeno-associated viruses) Uses viral vectors to deliver nucleic acids into cells Attached adherent cells, stem cells, primary cells  

 

Advantages and Disadvantages of the Different Transfection Methods
  Advantages Disadvantages
Lipid Mediated
  • Efficiency — effectively deliver nucleic acids to cells in a culture dish
  • Minimal toxicity — deliver the nucleic acids with low cell death or little decrease in metabolism
  • Activity — transfected nucleic acids lead to measurable change
  • Easy to use — minimal steps required; adaptable to high-throughput systems
  • Economical — a more active lipid will reduce the cost of lipid and nucleic acid, and achieve effective results
  • Not applicable to all cell types — some cell lines are unable to transfect with lipids
Viral Mediated
  • Very high gene-delivery efficiency, 95–100%
  • Simplicity of infection
  • Labor intensive
  • Best for introducing a single cloned gene that is to be highly expressed
  • P2 containment required for most viruses
    • Institutional regulation and review boards required
    • Viral transfer of regulatory genes or oncogenes is inherently dangerous and should be carefully monitored
    • Host range specificity may not be adequate
  • Many viruses are lytic
  • Need for packaging cell lines
Calcium Phosphate
  • Inexpensive
  • High-efficiency cell type dependent
  • Can be applied to a wide range of cell types
  • Can be used for transient and stable transfection
  • Reagent consistency is critical for reproducibility
  • Small pH changes (±0.1) can compromise the efficacy
  • Size and quality of the precipitate are crucial to the success
  • of transfection
  • Calcium phosphate precipitation does not work in RPMI, due to the high concentration of phosphate within the medium
DEAE-Dextran
  • Inexpensive
  • Easy to perform and quick
  • Can be applied to a wide range of cell types
  • High concentrations of DEAE-dextran can be toxic to cells
  • Transfection efficiencies will vary with cell type
  • Can only be used with transient transfection
  • Typically produces less than 10% delivery in primary cells
Magnet Mediated
  • Rapid
  • Increased transfection efficiency by the directed transport, especially for low amounts of nucleic acids
  • High transfection rates for adherent mammalian cell lines and primary cell cultures (suspension cells and cells from other organisms also successfully transfected but need to be immortalized)
  • Mild treatment of cells
  • Can also be performed in the presence of serum
  • Relatively new method
  • Requires adherent cells; suspension cells need to be immobilized or centrifuged

The following table summarizes how common lipid and viral methods work.

Protocols for Different Transfection Methods
Lipid-Mediated
  • Cationic lipids are amphiphilic molecules that have a positively charged polar head group linked, via an anchor, to a nonpolar hydrophobic domain generally comprised of two alkyl chains
  • Structural variations in the hydrophobic domain of cationic lipids include the length and the degree of non-saturation of the alkyl chains
  • Electrostatic interactions between the positive charges of the cationic lipid head groups and the negatively charged phosphates of the DNA backbone are the main forces that allow DNA to spontaneously associate with cationic lipids
Viral Mediated
RNA Viruses
  • Retroviruses — a class of viruses that can create double-stranded DNA copies of their RNA genomes; these copies can be integrated into the chromosomes of host cells. Examples include:
    • Murine leukemia virus (MuLV)
    • Human immunodeficiency virus (HIV)
    • Human T-cell lymphotropic virus (HTLV)
DNA Viruses
  • Adenoviruses — a class of viruses with double-stranded DNA genomes that cause respiratory, intestinal, and eye infections in humans; the virus that causes the common cold is an adenovirus
  • Adeno-associated viruses — a class of small, single-stranded DNA viruses that can insert their genetic material at a specific site on chromosome 19
  • Herpes simplex viruses — a class of double-stranded DNA viruses that infect a particular cell type, neurons; herpes simplex virus type 1 is a common human pathogen that causes cold sores

Viral Transfection workflow.

Calcium Phosphate

The protocol involves mixing DNA with calcium chloride, adding the mixture in a controlled manner to a buffered saline/phosphate solution, and allowing the mixture to incubate at room temperature.

This step generates a precipitate that is dispersed onto the cultured cells. The precipitate is taken up by the cells via endocytosis or phagocytosis.

Intercalation of Ca++ ions.

Protocol

Solution A: DNA in calcium solution
Solution B: 2x Hanks buffered saline solution

  • Add solution A to solution B while vortexing
  • Incubate 20–30 min. Apply the solution to the subconfluent cell culture
  • Incubate 2–12 hr. Replace the solution with complete growth medium
  • Assay for transient gene expression or begin selection for stable transformation

Cationic Polymers

Cationic polymers differ from cationic lipids in that they do not contain a hydrophobic moiety and are completely soluble in water. Given their polymeric nature, cationic polymers can be synthesized in different lengths, with different geometry (linear versus branched). The most striking difference between cationic lipids and cationic polymers is the ability of the cationic polymers to more efficiently condense DNA.

There are three general types of cationic polymers used in tranfections:

  • Linear (histone, spermine, and polylysine)
  • Branched
  • Spherical

Cationic polymers include polyethyleneimine (PEI) and dendrimers.


DEAE-Dextran

DEAE-dextran is a cationic polymer that tightly associates with negatively charged nucleic acids. The positively charged DNA:polymer complex comes into close association with the negatively charged cell membrane. DNA:polymer complex uptake into the cell is presumed to occur via endocytosis.

Protocol

Solution A: DNA (~1–5 µg/ml) diluted into 2 ml of growth medium with serum containing chloroquine
Solution B: DEAE-dextran solution (~50–500 ug/ml)
Solution C: ~5 ml of DMSO
Solution D: Complete growth medium

  • Add solution A to solution B, then mix gently
  • Aspirate cell medium and apply the mixed A and B solutions to the subconfluent cell culture. Incubate the DNA mixture for ~4 hr; check periodically for cell health
  • Aspirate the supernatant
  • Add solution C to induce DNA uptake
  • Remove DMSO and replace with solution D; assay for transient gene expression

Activated Dendrimers

Positively charged amino groups (termini) on the surface of the dendrimer molecule interact with the negatively charged phosphate groups of the DNA molecule to form a DNA-dendrimer complex.

The DNA-dendrimer complex has an overall positive net charge and can bind to negatively charged surface molecules on the membrane of eukaryotic cells. Complexes bound to the cell surface are taken into the cell by nonspecific endocytosis. Once inside the cell, the complexes are transported to the endosomes.

  • DNA is protected from degradation by endosomal nucleases by being highly condensed within the DNA-dendrimer complex.
  • Amino groups on the dendrimers that are unprotonated at neutral pH can become protonated in the acidic environment of the endosome. This leads to buffering of the endosome, which inhibits pH-dependent endosomal nucleases.

Dendrimer molecule.

Magnet-Mediated Transfection

Magnet-mediated transfection uses magnetic force to deliver nucleic acids into target cells. Therefore, nucleic acids are first associated with magnetic nanoparticles. Then, application of magnetic force drives the nucleic acid-particle complexes towards and into the target cells, where the cargo is released.

Magnet-mediated transfection.

 

Transfection Protocols

The transfection protocol online library contains protocols obtained from the literature, developed by Bio-Rad scientists, or submitted by scientists like you. Browse protocols to view our library and find your starting point or submit a protocol by clicking the proper technology.

 

関連コンテンツ

 
Literature
Number Description Download
5448 MicroPulser Electroporator Flier, Rev A Click to download
5582 Gene Pulser Electroporation Buffer Product Information Sheet, Rev A Click to download
5399 Gene Pulser siRNA Electroporation References, Rev A Click to download
5445 Gene Pulser Xcell Electroporation System Flier, Rev A Click to download
5598 Gene Pulser MXcell Electroporation System Flier, Rev B Click to download
5634 Gene Pulser MXcell Electroporation System Brochure, Rev A Click to download
1908 Electroporation Cuvette Flier, Rev B Click to download
5553 Gene Modulation Workflow Brochure, Rev B Click to download
1365 Introducing Proteins Into Cells by Electroporation Click to download
1345 Electroporation of Primary Bone Marrow Cells Click to download
1355 Production of Hybridomas by Electrofusion Click to download
1349 Electroporation of T-Cell and Macrophage Cell Lines Click to download
5542 Electroporation Systems Brochure, Rev A Click to download
5858 The Gene Pulser MXcell Electroporation System Provides Reproducible Results in Electroporation Plates and Cuvettes With the Same Protocol, Rev A Click to download
5641 The Gene Pulser MXcell Electroporation System Delivers Consistent Results Required for Optimizing Delivery Protocols, Rev A Click to download
5603 Optimization of Electroporation Using Gene Pulser Electroporation Buffer and the Gene Pulser MXcell Electroporation System, Rev A Click to download
5622 Optimization of Electroporation Conditions With the Gene Pulser MXcell Electroporation System, Rev A Click to download
5686 Optimization of Electroporation Conditions for Jurkat Cells Using the Gene Pulser MXcell Electroporation System, Rev A Click to download
5687 Transfection of Mammalian Cells Using Preset Protocols on the Gene Pulser MXcell Electroporation System, Rev A Click to download
5720 Transfection of Neuroblastoma Cell Lines Using the Gene Pulser MXcell Electroporation System, Rev A Click to download
5704 Electroporation Conditions for Chinese Hamster Ovary Cells Using the Gene Pulser MXcell Electroporation System, Rev A Click to download
5733 Transfection of Chinese Hamster Ovary-Derived DG44 Cells Using the Gene Pulser MXcell Electroporation System, Rev A Click to download
5774 Delivery of siRNA by Electroporation Into Primary Human Neutrophils Using the Gene Pulser MXcell System, Rev A Click to download
5778 Electroporation Parameters for Transfection of HL-60 Leukocytic Cell Line With siRNA Using the Gene Pulser MXcell System, Rev B Click to download
5823 Electroporation of Primary Murine Mast Cells Using the Gene Pulser MXcell Electroporation System, Rev A Click to download
5842 Optimization of Electroporation Conditions for Two Different Burkitt Lymphoma Cell Lines Using the Gene Pulser MXcell System, Rev B Click to download
5860 Analysis of IL-4 Dependent Gene Expression in Namalwa Cells by siRNA Transfection: An Example of Pathway Analysis Using the Gene Pulser MXcell Electroporation System, Rev A Click to download
5904 Transfection of Mouse and Human Embryonic Stem Cells by Electroporation Using the Gene Pulser Mxcell™ System, Rev A Click to download
5443 Biolistic Particle Delivery Systems Brochure, Rev A Click to download
5447 Biolistic PDS-1000/He System Flier, Rev A Click to download
5446 Helios Gene Gun System Flier, Rev A Click to download
2051 Transformation of Filamentous Fungi by Microprojectile Bombardment Click to download
2015 Sub-Micron Gold Particles Are Superior to Larger Particles for Efficient Biolistic Transformation of Organelles and Some Cell Types Click to download
2087 Biolistic Transfection of Organotypic Brain Slices and Dissociated Cells Click to download
2658 Single-Cell Complementation of Barley mlo Mutants Using a PDS-1000/He Hepta System Click to download
1688 Optimization of Biolistic® Transformation Using the Helium-Driven PDS-1000/He System Click to download
2433 Transformation of Nematodes With the Helios Gene Gun Click to download
2552 The Gene Gun: Current Applications in Cutaneous Gene Therapy, Rev A Click to download
2453 Optimization of Gene Delivery Into Arabidopsis, Tobacco, and Birch Using the Helios Gene Gun System Click to download
2531 Inoculation of Viral RNA and cDNA to Potato and Tobacco Plants Using the Helios Gene Gun Click to download
2410 Detection of Reporter Gene Activity in Cell Cultures and Murine Epidermis After Helios® Gene Gun-Mediated Particle Bombardment, Rev B Click to download
2726 Delivery of pCMV-S DNA Using the Helios® Gene Gun System Is Superior to Intramuscular Injection in Balb/c Mice Click to download
1689 Comparison of Performance Characteristics of Different Biolistic® Devices Click to download
2768 Biolistic Gene Transfer to Generate Transgenic Schistosomes, Rev A Click to download
3105 siLentFect Lipid Reagent Flier, Rev B Click to download
2873 TransFectin Lipid Reagent Brochure, Rev A Click to download
2874 TransFectin Lipid Reagent Flier, Rev B Click to download
3197 Optimization of TransFectin Lipid Reagent-Mediated Transfection for Different Cell Types, Rev A Click to download
3138_015 TransFectin Lipid Reagent Protocol, Human, A459, Lung Carcinoma Click to download
3138_005 TransFectin Lipid Reagent Protocol, Rat, PC12, Pheochromocytoma Click to download
3138_009 TransFectin Lipid Reagent Protocol, Human, 143B, Bone Marrow Osteosarcoma Click to download
5226 Highly Efficient Transfection of Mouse ES Cells With TransFectin Lipid Reagent Click to download
3138_018 TransFectin Lipid Reagent Protocol, Human, HEK 293, Kidney Click to download
3138_017 TransFectin Lipid Reagent Protocol, Human, HEK 293T, Kidney Click to download
5439 Highly Efficient Transfection of a Human Epithelial Cell Line With Chemically Synthesized siRNA Using siLentFECT Lipid Reagent, Rev A Click to download
5370 Transfection of Caco-2 Cells With siRNA Using the siLentFect Lipid Reagent, Rev A Click to download
5808 Novel Uses of Microarrays in Detecting Gene Silencing (Poster), Rev A Click to download
6179 Lipid Transfection Reagents Selection Guide
Click to download
 
 
LUSOOP49 [x-forwarded-proto] = [https] [accept-language] = [en-US,en;q=0.5] [x-forwarded-port] = [443] [x-forwarded-for] = [3.235.45.196, 10.232.3.119] [accept] = [text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8] [seourl] = [/ja-jp/applications-technologies/chemical-viral-based-transfection-methods] [x-amzn-trace-id] = [Root=1-5f2a7272-b5fc315dc4625ef25d6051df] [x-forwarded-server] = [lsds-prod-s.br.aws-livesite.io] [x-forwarded-host] = [www.bio-rad.com] [x-query-string] = [ID=LUSOOP49] [host] = [10.232.1.21:1776] [x-request-uri] = [/ja-jp/applications-technologies/chemical-viral-based-transfection-methods] [connection] = [Keep-Alive] [accept-encoding] = [br,gzip] [user-agent] = [CCBot/2.0 (https://commoncrawl.org/faq/)] AppTech/AppTechDetails pageStyleKey internet/solutions_sub applications-technologies/chemical-viral-based-transfection-methods LSR LUSOOP49 Chemical and Viral Based Chemical- and Viral-Based Transfection Methods /webroot/web/html/lsr/solutions/technologies/transfection <p>This section provides information on chemical transfection methods including liposome-meditated transfection, calcium phosphate, and viral mediated delivery.</p> <p><strong>Related Topics</strong>: <a href="/evportal/destination/solutions?catID=LUSONV30E">Instrument-Based Transfection Methods</a>, <a href="/evportal/destination/solutions?catID=LUSOPS84">Posttransfection Analysis of Cells</a>, and <a href="/evportal/destination/solutions?catID=LUSOLB470">Cell Counting Methods</a>.</p> Methods of Transfection <table class="pd_table pd_gridlines" border="0"> <tbody> <tr class="pd_colorbackground"> <td><strong>Method</strong></td> <td><strong>Function</strong></td> <td><strong>Recommended Cells</strong></td> <td><strong>Products</strong></td> </tr> <tr class="txttop"> <td>Lipid-mediated</td> <td>Uses lipids to cause a cell to absorb nucleic acids; transfer genetic material into the cell via liposomes, which are vesicles that can merge with the cell membrane</td> <td>Immortal cells, adherent (attached), or suspension cells</td> <td><a href="http://www.bio-rad.com/evportal/destination/commerce/product_detail?catID=680dace0-c2a1-451c-ba7f-d15a2294aa52">TransFectin&trade; Lipid Reagent<br /> <br /> </a><a href="http://www.bio-rad.com/evportal/destination/commerce/product_detail?catID=6860e063-0049-4607-95f9-03cae130b221">SiLentFect&trade; Lipid Reagent for RNAi</a></td> </tr> <tr class="txttop"> <td>Viral vector (for example, retrovirus, lentivirus, adenovirus, or adeno-associated viruses)</td> <td>Uses viral vectors to deliver nucleic acids into cells</td> <td>Attached adherent cells, stem cells, primary cells</td> <td>&nbsp;</td> </tr> </tbody> </table> <p>&nbsp;</p> <table class="pd_table pd_gridlines" border="0"> <tbody> <tr class="pd_colorbackground"> <td colspan="3"><strong>Advantages and Disadvantages of the Different Transfection Methods</strong></td> </tr> <tr class="pd_colorbackground"> <td>&nbsp;</td> <td><strong>Advantages</strong></td> <td><strong>Disadvantages</strong></td> </tr> <tr class="txttop"> <td valign="top">Lipid Mediated</td> <td valign="top"> <ul> <li style="border:0px">Efficiency &mdash; effectively deliver nucleic acids to cells in a culture dish</li> <li style="border:0px">Minimal toxicity &mdash; deliver the nucleic acids with low cell death or little decrease in metabolism</li> <li style="border:0px">Activity &mdash; transfected nucleic acids lead to measurable change</li> <li style="border:0px">Easy to use &mdash; minimal steps required; adaptable to high-throughput systems</li> <li style="border:0px">Economical &mdash; a more active lipid will reduce the cost of lipid and nucleic acid, and achieve effective results</li> </ul> </td> <td valign="top"> <ul> <li style="border:0px">Not applicable to all cell types &mdash; some cell lines are unable to transfect with lipids</li> </ul> </td> </tr> <tr class="txttop"> <td valign="top">Viral Mediated</td> <td valign="top"> <ul> <li style="border:0px">Very high gene-delivery efficiency, 95&ndash;100%</li> <li style="border:0px">Simplicity of infection</li> </ul> </td> <td valign="top"> <ul> <li style="border:0px">Labor intensive</li> <li style="border:0px">Best for introducing a single cloned gene that is to be highly expressed</li> <li style="border:0px">P2 containment required for most viruses <ul> <li style="border:0px">Institutional regulation and review boards required</li> <li style="border:0px">Viral transfer of regulatory genes or oncogenes is inherently dangerous and should be carefully monitored</li> <li style="border:0px">Host range specificity may not be adequate</li> </ul> </li> <li style="border:0px">Many viruses are lytic</li> <li style="border:0px">Need for packaging cell lines</li> </ul> </td> </tr> <tr class="txttop"> <td valign="top">Calcium Phosphate</td> <td valign="top"> <ul> <li style="border:0px">Inexpensive</li> <li style="border:0px">High-efficiency cell type dependent</li> <li style="border:0px">Can be applied to a wide range of cell types</li> <li style="border:0px">Can be used for transient and stable transfection</li> </ul> </td> <td valign="top"> <ul> <li style="border:0px">Reagent consistency is critical for reproducibility</li> <li style="border:0px">Small pH changes (&plusmn;0.1) can compromise the efficacy</li> <li style="border:0px">Size and quality of the precipitate are crucial to the success</li> of transfection <li style="border:0px">Calcium phosphate precipitation does not work in RPMI, due to the high concentration of phosphate within the medium</li> </ul> </td> </tr> <tr class="txttop"> <td valign="top">DEAE-Dextran</td> <td valign="top"> <ul> <li style="border:0px">Inexpensive</li> <li style="border:0px">Easy to perform and quick</li> <li style="border:0px">Can be applied to a wide range of cell types</li> </ul> </td> <td valign="top"> <ul> <li style="border:0px">High concentrations of DEAE-dextran can be toxic to cells</li> <li style="border:0px">Transfection efficiencies will vary with cell type</li> <li style="border:0px">Can only be used with transient transfection</li> <li style="border:0px">Typically produces less than 10% delivery in primary cells</li> </ul> </td> </tr> <tr class="txttop"> <td valign="top">Magnet Mediated</td> <td valign="top"> <ul> <li style="border:0px">Rapid </li> <li style="border:0px"> Increased transfection efficiency by the directed transport, especially for low amounts of nucleic acids</li> <li style="border:0px"> High transfection rates for adherent mammalian cell lines and primary cell cultures (suspension cells and cells from other organisms also successfully transfected but need to be immortalized)</li> <li style="border:0px"> Mild treatment of cells</li> <li style="border:0px"> Can also be performed in the presence of serum</li> </ul> </td> <td valign="top"> <ul> <li style="border:0px">Relatively new method</li> <li style="border:0px"> Requires adherent cells; suspension cells need to be immobilized or centrifuged</li> </ul> </td> </tr> </tbody> </table> <p>The following table summarizes how common lipid and viral methods work.</p> <table class="pd_table pd_gridlines" border="0"> <tbody> <tr class="pd_colorbackground"> <td><strong>Protocols for Different Transfection Methods</strong></td> <td></td> </tr> <tr class="pd_colorbackground"> <td><strong>Lipid-Mediated</strong></td> <td></td> </tr> <tr> <td> <ul> <li style="border:0px">Cationic lipids are amphiphilic molecules that have a positively charged polar head group linked, via an anchor, to a nonpolar hydrophobic domain generally comprised of two alkyl chains</li> <li style="border:0px">Structural variations in the hydrophobic domain of cationic lipids include the length and the degree of non-saturation of the alkyl chains</li> <li style="border:0px">Electrostatic interactions between the positive charges of the cationic lipid head groups and the negatively charged phosphates of the DNA backbone are the main forces that allow DNA to spontaneously associate with cationic lipids</li> </ul> </td> <td></td> </tr> <tr class="pd_colorbackground"> <td><strong>Viral Mediated</strong></td> <td></td> </tr> <tr class="txttop"> <td><strong>RNA Viruses</strong> <ul> <li style="border:0px"><strong>Retroviruses</strong> &mdash; a class of viruses that can create double-stranded DNA copies of their RNA genomes; these copies can be integrated into the chromosomes of host cells. Examples include: <ul> <li style="border:0px">Murine leukemia virus (MuLV)</li> <li style="border:0px">Human immunodeficiency virus (HIV)</li> <li style="border:0px">Human T-cell lymphotropic virus (HTLV)</li> </ul> </li> </ul> <strong>DNA Viruses</strong><br /> <ul> <li style="border:0px"><strong>Adenoviruses</strong> &mdash; a class of viruses with double-stranded DNA genomes that cause respiratory, intestinal, and eye infections in humans; the virus that causes the common cold is an adenovirus</li> <li style="border:0px"><strong>Adeno-associated viruses</strong> &mdash; a class of small, single-stranded DNA viruses that can insert their genetic material at a specific site on chromosome 19</li> <li style="border:0px"><strong>Herpes simplex viruses</strong> &mdash; a class of double-stranded DNA viruses that infect a particular cell type, neurons; herpes simplex virus type 1 is a common human pathogen that causes cold sores</li> </ul> <br /> <p><img src="/webroot/web/images/lsr/solutions/technologies/gene_expression/pcr/technology_detail/gxt42_img1.jpg" alt="" width="449" height="436" /></p> <p class="caption"><strong>Viral Transfection workflow.</strong></p> </td> <td></td> </tr> <tr class="pd_colorbackground"> <td><strong>Calcium Phosphate</strong></td> <td></td> </tr> <tr> <td> <p>The protocol involves mixing DNA with calcium chloride, adding the mixture in a controlled manner to a buffered saline/phosphate solution, and allowing the mixture to incubate at room temperature.</p> <p>This step generates a precipitate that is dispersed onto the cultured cells. The precipitate is taken up by the cells via endocytosis or phagocytosis.</p> <p><img src="/webroot/web/images/lsr/solutions/technologies/gene_expression/pcr/technology_detail/gxt42_img2.jpg" alt="" width="331" height="310" /></p> <p class="caption"><strong>Intercalation of Ca<sup>++</sup> ions.</strong></p> <p><strong>Protocol</strong></p> <p>Solution A: DNA in calcium solution<br /> Solution B: 2x Hanks buffered saline solution</p> <ul> <li style="border:0px">Add solution A to solution B while vortexing</li> <li style="border:0px">Incubate 20&ndash;30 min. Apply the solution to the subconfluent cell culture</li> <li style="border:0px">Incubate 2&ndash;12 hr. Replace the solution with complete growth medium</li> <li style="border:0px">Assay for transient gene expression or begin selection for stable transformation</li> </ul> <p><img src="/webroot/web/images/lsr/solutions/technologies/gene_expression/pcr/technology_detail/gxt42_img3.jpg" alt="" width="234" height="393" /></p> </td> <td></td> </tr> <tr class="pd_colorbackground"> <td><strong>Cationic Polymers</strong></td> <td></td> </tr> <tr> <td> <p>Cationic polymers differ from cationic lipids in that they do not contain a hydrophobic moiety and are completely soluble in water. Given their polymeric nature, cationic polymers can be synthesized in different lengths, with different geometry (linear versus branched). The most striking difference between cationic lipids and cationic polymers is the ability of the cationic polymers to more efficiently condense DNA.</p> <p>There are three general types of cationic polymers used in tranfections:</p> <ul> <li style="border:0px">Linear (histone, spermine, and polylysine)</li> <li style="border:0px">Branched</li> <li style="border:0px">Spherical </li> </ul> <p>Cationic polymers include polyethyleneimine (PEI) and dendrimers.</p> <br /></td> <td></td> </tr> <tr class="pd_colorbackground"> <td><strong>DEAE-Dextran</strong></td> <td></td> </tr> <tr> <td> <p>DEAE-dextran is a cationic polymer that tightly associates with negatively charged nucleic acids. The positively charged DNA:polymer complex comes into close association with the negatively charged cell membrane. DNA:polymer complex uptake into the cell is presumed to occur via endocytosis.</p> <p><img src="/webroot/web/images/lsr/solutions/technologies/gene_expression/pcr/technology_detail/gxt42_img4.jpg" alt="" width="426" height="168" /></p> <p><strong>Protocol</strong></p> <p>Solution A: DNA (~1&ndash;5 &micro;g/ml) diluted into 2 ml of growth medium with serum containing chloroquine<br /> Solution B: DEAE-dextran solution (~50&ndash;500 ug/ml)<br /> Solution C: ~5 ml of DMSO<br /> Solution D: Complete growth medium</p> <ul> <li style="border:0px">Add solution A to solution B, then mix gently</li> <li style="border:0px">Aspirate cell medium and apply the mixed A and B solutions to the subconfluent cell culture. Incubate the DNA mixture for ~4 hr; check periodically for cell health</li> <li style="border:0px">Aspirate the supernatant</li> <li style="border:0px">Add solution C to induce DNA uptake</li> <li style="border:0px">Remove DMSO and replace with solution D; assay for transient gene expression</li> </ul> <p><img src="/webroot/web/images/lsr/solutions/technologies/gene_expression/pcr/technology_detail/gxt42_img5.jpg" alt="" width="123" height="419" /></p> </td> <td></td> </tr> <tr class="pd_colorbackground"> <td><strong>Activated Dendrimers</strong></td> <td></td> </tr> <tr> <td> <p>Positively charged amino groups (termini) on the surface of the dendrimer molecule interact with the negatively charged phosphate groups of the DNA molecule to form a DNA-dendrimer complex.</p> <p>The DNA-dendrimer complex has an overall positive net charge and can bind to negatively charged surface molecules on the membrane of eukaryotic cells. Complexes bound to the cell surface are taken into the cell by nonspecific endocytosis. Once inside the cell, the complexes are transported to the endosomes.</p> <ol style="width: 550px;"> </ol> <ul> <li style="border:0px">DNA is protected from degradation by endosomal nucleases by being highly condensed within the DNA-dendrimer complex.</li> <li style="border:0px">Amino groups on the dendrimers that are unprotonated at neutral pH can become protonated in the acidic environment of the endosome. This leads to buffering of the endosome, which inhibits pH-dependent endosomal nucleases.</li> </ul> <ol style="width: 550px;"> </ol> <p style="clear: both;"><img src="/webroot/web/images/lsr/solutions/technologies/gene_expression/pcr/technology_detail/gxt42_img6.jpg" alt="" width="425" height="345" /></p> <p class="caption"><strong>Dendrimer molecule.</strong></p> </td> <td></td> </tr> <tr class="pd_colorbackground"> <td><strong>Magnet-Mediated Transfection</strong></td> <td></td> </tr> <tr> <td> <p>Magnet-mediated transfection uses magnetic force to deliver nucleic acids into target cells. Therefore, nucleic acids are first associated with magnetic nanoparticles. Then, application of magnetic force drives the nucleic acid-particle complexes towards and into the target cells, where the cargo is released.</p> <p><img src="/webroot/web/images/lsr/solutions/technologies/gene_expression/pcr/technology_detail/gxt42_img7.jpg" alt="" width="305" height="328" /></p> <p class="caption"><strong>Magnet-mediated transfection.</strong></p> </td> <td></td> </tr> </tbody> </table> <div class="top"><a href="#helptop">Back to Top</a></div> Transfection Protocols <p> <script type="text/javascript"><!-- // popupwin function popIt(url,w,h,r){ var mydate = new Date(); wname=''+mydate.getMonth()+mydate.getDate()+mydate.getHours()+mydate.getMinutes()+mydate.getSeconds(); if (w && h && r) { popwin = window.open(url,"popwin"+wname,"height="+h+",width="+w+",status=1,scrollbars=1,location=1,menubar=1,resizable"); } else { popwin = window.open(url,"popwin"+wname,"height="+h+",width="+w+",status=1,scrollbars=1,location=0,resizable"); } } // --></script> </p> <p>The transfection protocol online library contains protocols obtained from the literature, developed by Bio-Rad scientists, or submitted by scientists like you. <a onclick="popIt('http://www.bio-rad.com/genetransferprotocols',1300,700);return false" href="#" target="_blank">Browse protocols</a> to view our library and find your starting point or submit a protocol by clicking the proper technology.</p> <div class="top"><a href="#helptop">Back to Top</a></div> Selection Guide <table id="carttablealigned" class="literature_table" style="height: auto; width: 583px;" border="0" cellspacing="0" cellpadding="0"> <tbody> <tr> <td width="100">6179</td> <td width="350">Lipid Transfection Reagents Selection Guide<br /></td> <td class="pdf"><a class="pdf" href="http://www.bio-rad.com/webroot/web/pdf/lsr/literature/Bulletin_6179.pdf" target="_blank"><span>Click to download</span></a></td> </tr> </tbody> </table> 5448 5582 5399 5445 5598 5634 1908 5553 5924 1365 1345 1355 1349 5542 5858 5641 5603 5622 5686 5687 5720 5704 5733 5774 5778 5823 5842 5684 0108 5860 5904 2497 5443 5447 5446 2051 2015 2087 2658 1688 2433 2552 2453 2531 2410 2726 1689 2768 3105 2873 2874 3197 3138_015 3138_005 3138_009 5226 3138_018 3138_017 5439 5370 5807 5808 5894 Life Science Research/Products/Transfection/Lipid Transfection/TransFectin Lipid Reagent ->MT::680dace0-c2a1-451c-ba7f-d15a2294aa52##Life Science Research/Products/Transfection/Lipid Transfection/siLentFect Lipid Reagent for RNAi ->MT::6860e063-0049-4607-95f9-03cae130b221##Life Science Research/Products/Transfection/Electroporation/Gene Pulser Xcell Electroporation Systems ->MT::b1a35eb3-d55c-47b3-aaf3-95e4d1d85848##Life Science Research/Products/Sample Quantitation/TC10 Automated Cell Counter ->MTS::KW3FRJ15##Life Science Research/Products/Transfection/Biolistic Particle Delivery Systems/PDS-1000 | He and Hepta Systems ->MT::1730e08d-f43a-46ea-b7f3-7b35c04c36eb## Life Science Research/Solutions/Technologies/qPCR|Real-Time PCR ->MTS::LUSO4W8UU##Life Science Research/Solutions/Technologies/Cell Counting Methods ->MTS::LUSOLB470##Life Science Research/Solutions/Technologies/Imaging and Analysis/Imaging Systems ->MTS::LUSQCPKSY##Life Science Research/Solutions/Technologies/Western Blotting ->MTS::LUSPPAKG4## Eddie C Chemical & Viral Transfection Methods Learn about chemical transfection methods including liposome-meditated transfection, calcium phosphate, and viral mediated delivery. chemical, transfection, liposome, lipid, viral, transformation 12/29/11 02:07 PM 12/29/21 02:08 PM AE,AI,AL,AM,AR,AT,AU,AZ,BA,BD,BE,BF,BG,BH,BN,BO,BR,BW,CA,CH,CL,CM,CN,CO,CR,CY,CZ,DE,DK,DO,DZ,EC,EE,EG,EH,ER,ES,ET,FI,FM,FO,FR,GA,GE,GF,GH,GP,GR,GT,GU,HK,HN,HR,HT,HU,ID,IE,IL,IN,IS,IT,JM,JO,JP,KE,KH,KR,KW,KZ,LB,LI,LK,LT,LU,LV,MA,MD,MG,MK,ML,MO,MQ,MS,MT,MU,MX,MY,NG,NI,NL,NO,NP,NZ,OM,PA,PE,PF,PG,PH,PK,PL,PR,PS,PT,PW,PY,QA,RO,RS,RU,SA,SB,SE,SG,SI,SK,SN,ST,SV,TG,TH,TN,TO,TR,TT,TW,TZ,UA,UG,UK,US,UY,UZ,VA,VE,VU,XK,YE,ZA,VN en LSR /LSR/Technologies/Transfection N 0
Sign Up for Bio-Rad Updates!
最新ニュース、プロモーション情報取得を希望される方は、下記にメールアドレスを入力して下さい。
LUSOOP49 [x-forwarded-proto] = [https] [accept-language] = [en-US,en;q=0.5] [x-forwarded-port] = [443] [x-forwarded-for] = [3.235.45.196, 10.232.3.119] [accept] = [text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8] [seourl] = [/ja-jp/applications-technologies/chemical-viral-based-transfection-methods] [x-amzn-trace-id] = [Root=1-5f2a7272-b5fc315dc4625ef25d6051df] [x-forwarded-server] = [lsds-prod-s.br.aws-livesite.io] [x-forwarded-host] = [www.bio-rad.com] [x-query-string] = [ID=LUSOOP49] [host] = [10.232.1.21:1776] [x-request-uri] = [/ja-jp/applications-technologies/chemical-viral-based-transfection-methods] [connection] = [Keep-Alive] [accept-encoding] = [br,gzip] [user-agent] = [CCBot/2.0 (https://commoncrawl.org/faq/)] AppTech/AppTechDetails pageStyleKey applications-technologies/chemical-viral-based-transfection-methods LSR https://www.bio-rad-antibodies.com https://www.bio-rad.com 11/25/13 03:27 PM en_US true internet/generic 2020-08-05 00:02:29 /default/main/bio-rad/STAGING 1385422029381 JP templatedata/internet/generic/data/ja_JP/GNL/page_generic_footer_b2c_1385422169_JP.xml page_generic_footer_b2c /default/main/bio-rad/WORKAREA/default jddgmlyr 2017-10-27 13:14:15 true Needs translation jddgmlyr templatedata/internet/generic/data/ja_JP/GNL/page_generic_footer_b2c_1385422169_JP.xml GNL N /default/main/bio-rad ja_JP 05/20/37 12:46 AM 1594193512262 2020-08-05 00:02:29 /default/main/bio-rad/WORKAREA/default/templatedata/internet/generic/data/ja_JP/GNL/page_generic_footer_b2c_1385422169_JP.xml footer 1 1385422029381 page_generic_footer_b2c <div class="col"> <h4>サポート</h4> <ul> <li><a class="wtclass linkgeneration" href="_brcDomain/_locale/life-science-research/support?ID=1140">ライフサイエンス関連</a></li> <li><a class="wtclass linkgeneration" href="_acdDomain/technical-support.html">抗体関連</a></li> <li><a class="wtclass linkgeneration" href="_brcDomain/_locale/life-science-research/purchase-service-programs/expert-care-service?ID=1362789833723">Expert Care サービス</a></li> <li><a class="wtclass linkgeneration" href="_brcDomain/contact">お問合せ</a></li> </ul> </div> <div class="col"> <h4>ドキュメント類</h4> <ul> <li><a class="wtclass linkgeneration" href="_brcDomain/_locale/literature-library">Literature Library</a></li> <li><a class="wtclass linkgeneration" href="_brcDomain/_locale/life-science-research/support/certificate-of-analysis">試験成績書</a></li> <li><a class="wtclass" href="https://myeinserts.qcnet.com/" target="_blank" rel="noopener noreferrer">QC Inserts</a></li> <li><a class="wtclass linkgeneration" href="/featured/en/quality-management-systems-certificates.html">Quality Certification</a></li> </ul> </div> <div class="col"> <h4>問い合わせ一覧</h4> <ul> <li><a class="wtclass linkgeneration" href="_brcDomain/_locale/my-bio-rad">クイック見積り</a></li> <li><a id="footer_orderLink" class="orderhistoryLink wtclass" href="javascript:void(0);">注文履歴</a></li> <li><a class="wtclass" id="footer_quoteLink" href="javascript:void(0);">見積り依頼履歴</a></li> <li><a class="wtclass linkgeneration" href="_brcDomain/_locale/my-bio-rad">マイ バイオ・ラッド</a></li> </ul> </div> <div class="col"> <h4>製品</h4> <ul> <li><a class="wtclass linkgeneration" href="_brcDomain/_locale/life-science-research?ID=1100">ライフサイエンス</a></li> <li><a class="wtclass linkgeneration" href="_acdDomain/">抗体</a></li> <li><a class="wtclass linkgeneration" href="_brcDomain/_locale/clinical-diagnostics?ID=1200">診断薬</a></li> <li><a class="wtclass linkgeneration" href="_brcDomain/_locale/process-separations?ID=1400">プロセスセパレーション</a></li> <li><a class="wtclass linkgeneration" href="_brcDomain/_locale/food-science?ID=1475">フードサイエンス</a></li> <li><a class="wtclass linkgeneration" href="_brcDomain/_locale/education?ID=1450">バイオ教育キット</a></li> </ul> </div> <div class="col" style="padding-right: 0;"> <h4>企業情報</h4> <ul> <li><a class="wtclass linkgeneration" href="_brcDomain/_locale/corporate/about-bio-rad?ID=1003">バイオ・ラッドについて</a></li> <li><a class="wtclass linkgeneration" href="_brcDomain/_locale/corporate/careers?ID=1004">採用情報</a></li> <li><a class="wtclass linkgeneration" href="_brcDomain/_locale/corporate/investor-relations?ID=1007">投資家の皆様へ</a></li> <li><a class="wtclass linkgeneration" href="_brcDomain/_locale/corporate/newsroom?ID=1006">ニュースルーム</a></li> <li><a class="wtclass linkgeneration" href="_acdDomain/blog/">Blog</a></li> <li><a class="wtclass" target="_blank" href="https://www.bioradiations.com" rel="noopener noreferrer">Bioradiations</a></li> <li> <div class="social"> <ul> <li><a class="no-target-style brconly wtclass" href="https://www.linkedin.com/company/bio-rad?trk=top_nav_home" target="_blank" rel="noopener noreferrer"><img src="https://www.bio-rad.com/webroot/web/images/general/icons/linkedin_round_40x40.png" alt="Bio-Rad LinkedIn" width="20" height="20" /></a> <a class="no-target-style bracd wtclass" style="display: none;" href="https://www.linkedin.com/company/bio-rad-antibodies" target="_blank" rel="noopener noreferrer"><img src="https://www.bio-rad.com/webroot/web/images/general/icons/linkedin_round_40x40.png" alt="Bio-Rad Antibodies LinkedIn" width="20" height="20" /></a></li> <li><a class="no-target-style brconly wtclass" href="https://www.youtube.com/user/BioRadLifeScience" target="_blank" rel="noopener noreferrer"><img src="https://www.bio-rad.com/webroot/web/images/general/icons/youtube-icon-rnd-40x40.png" alt="Bio-Rad YouTube" width="20" height="20" /></a> <a class="no-target-style bracd wtclass" style="display: none;" href="https://www.youtube.com/playlist?list=PLrAEgIY86I6w1jajKp3O9RQJEvJZ2ux0I" target="_blank" rel="noopener noreferrer"><img src="https://www.bio-rad.com/webroot/web/images/general/icons/youtube-icon-rnd-40x40.png" alt="Bio-Rad Antibodies YouTube" width="20" height="20" /></a></li> <li><a class="no-target-style brconly wtclass" href="https://twitter.com/BioRadLifeSci" target="_blank" rel="noopener noreferrer"><img src="https://www.bio-rad.com/webroot/web/images/general/icons/twitter_round_40x40.png" alt="Bio-Rad Twitter" width="20" height="20" /></a> <a class="no-target-style bracd wtclass" style="display: none;" href="https://twitter.com/BioRadAbs" target="_blank" rel="noopener noreferrer"><img src="https://www.bio-rad.com/webroot/web/images/general/icons/twitter_round_40x40.png" alt="Bio-Rad Antibodies Twitter" width="20" height="20" /></a></li> <li><a class="no-target-style brconly wtclass" href="https://www.facebook.com/biorad/" target="_blank" rel="noopener noreferrer"><img src="https://www.bio-rad.com/webroot/web/images/general/icons/facebook-icon-rnd-40x40.png" alt="Bio-Rad Facebook" width="20" height="20" /></a> <a class="no-target-style bracd wtclass" style="display: none;" href="https://www.facebook.com/BioRadAntibodies" target="_blank" rel="noopener noreferrer"><img src="https://www.bio-rad.com/webroot/web/images/general/icons/facebook-icon-rnd-40x40.png" alt="Bio-Rad Antibodies Facebook" width="20" height="20" /></a></li> <li><a class="no-target-style wtclass" href="https://www.instagram.com/bioradlabs/" target="_blank" rel="noopener noreferrer"><img src="https://www.bio-rad.com/webroot/web/images/general/icons/instagram-icon-rnd-40x40.png" alt="Bio-Rad Instagram" width="20" height="20" /></a></li> <li><a class="no-target-style wtclass" href="https://uk.pinterest.com/BioRadAbs/" target="_blank" rel="noopener noreferrer"><img src="https://www.bio-rad.com/webroot/web/images/general/icons/pinterest40x40.png" alt="Bio-Rad Pinterest" width="20" height="20" /></a></li> <li><a class="no-target-style wtclass" href="https://info.bio-rad.com/WeChat.html" target="_blank" rel="noopener noreferrer"><img src="https://www.bio-rad.com/webroot/web/images/general/icons/wechat_round_40x40.png" alt="Bio-Rad WeChat" width="20" height="20" /></a></li> </ul> </div> </li> </ul> </div> 0 /webroot/web/html footer_page_b2c_ja_jp.html /webroot/web/html/footer_page_b2c_ja_jp.html Sai Mandadhi Footer footer 11/25/13 03:27 PM 05/20/37 12:46 AM JP ja GNL /ja_JP/GNL N 0 ja-jp ホーム トレードマーク サイト利用規程 取引条件 インプリント EU リサイクルプログラム Transparency Information プライバシーポリシー Change Cookie Setting <script type="text/javascript">$(document).ready(function () {$(".links2").append('<style>.social-links-br {float: left;margin-right: 10px;}.social-links-br img {width: 20px;height: 20px;margin-right: 5px}</style><div class="social-links-br"><a class="no-target-style" href="https://www.linkedin.com/company/bio-rad?trk=top_nav_home" target="_blank"><img src="/webroot/web/images/general/icons/linkedin_round_40x40.png" alt="Bio-Rad LinkedIn"></a><a class="no-target-style" href="https://www.youtube.com/user/BioRadLifeScience" target="_blank"><img src="/webroot/web/images/general/icons/youtube-icon-rnd-40x40.png" alt="Bio-Rad YouTube"></a><a class="no-target-style" href="https://twitter.com/BioRadLifeSci" target="_blank"><img src="/webroot/web/images/general/icons/twitter_round_40x40.png" alt="Bio-Rad Twitter"></a><a class="no-target-style" href="https://www.facebook.com/biorad/" target="_blank"><img src="/webroot/web/images/general/icons/facebook-icon-rnd-40x40.png" alt="Bio-Rad Facebook"></a><a class="no-target-style" href="https://www.instagram.com/bioradlabs/" target="_blank"><img src="/webroot/web/images/general/icons/instagram-icon-rnd-40x40.png" alt="Bio-Rad Instagram"></a></div>');});</script>&copy; {0} Bio-Rad Laboratories, Inc. This page was last edited on {0} true True GTM-MJ2DN2S jp JP ja LSR life-science-research life-science-research /prd/ja/JP/direct/biorad?ts=1&cmd=OrdersWorkspaceDisplay /prd/ja/JP/direct/biorad?ts=1&cmd=QuotesWorkspaceDisplay /prd/ja/JP/direct/biorad?ts=1&cmd=InvoiceWorkspaceDisplay&_Tab=Invoice false false true true false 1040988879 LHsYCOu_wQMQz_Ww8AM window.google_tag_params true 272-THL-329 EU_COOKIE_PREFS CartID_ WT_FPC <script type="text/javascript">$.ajax({url: document.location.protocol + '//munchkin.marketo.net/munchkin.js',dataType: 'script',cache: true,success: function() {Munchkin.init('272-THL-329');}});</script> <script type="text/javascript" src="https://www.bio-rad.com/evportal/framework/skins/evolution/js/proxyMunchkin.js"></script> 2020 {"country":"jp","b2b_punch_out_mode":"","pageType":"App & Tech Detail","user_id":"","visitorLoginState":false,"visitorType":"","sessionType":"B2C","language":"ja","vertical":"LSR","b2b_org_id":""} 0 0 0