Bio-Rad’s Droplet Digital PCR (ddPCR) technology is based on water-oil emulsion droplet technology to partition the sample. The ddPCR technology is composed of a droplet generator, a droplet reader, and associated consumables. The droplet generator partitions each sample into 20,000 uniform nanoliter-sized droplets containing target and background DNA in random distribution. Each droplet contains a separate reaction. Droplets are transferred to a 96-well PCR plate and PCR is performed to end point in a thermal cycler. The droplets are singulated and pass by an optical detection system. Up to 96 samples can be processed per run.

WORKFLOW

A VERSATILE AND SCALABLE WORKFLOW

1. Prepare ddPCR reaction mix
 - Combine DNA/RNA sample, primers, and/or probes with one of Bio-Rad’s ddPCR supermixes
 - Fully validated ddPCR assays can be used

2. Generate droplets
 - Load the ddPCR reaction mix into the wells of a droplet generator cartridge
 - 8 x 20,000 droplets are generated from each run in the QX200 Droplet Generator
 - Target DNA (●) and background DNA (▲) are randomly distributed in droplets

3. Perform PCR
 - Transfer the droplets to a 96-well PCR plate and seal the plate
 - Run the PCR protocol

4. Read and analyze results
 - After PCR, load the 96-well PCR plate into the QX200 Droplet Reader
 - Positive and negative droplets in each sample are read
 - Analyze concentrations
ASSAYS FOR DROPLET DIGITAL PCR

EXPERTLY DESIGNED ASSAYS ARE A CLICK AWAY THROUGH OUR ASSAY DESIGN ENGINE

Go to bio-rad.com/Digital-Assays for more information.
One application that harnesses the power of ddPCR is mutation detection, where a biomarker exists within a background of a highly abundant counterpart that can differ by only a single nucleotide. Many methods for mutation analysis have poor selectivity and fail to detect mutant sequences with abundances of less than one in 100 wild-type sequences. Mutation detection assays on the ddPCR platform enable detection of minute mutant fractions without pre-amp because partitioning increases sensitivity by isolating the target signal from competing background.
COPY NUMBER ASSAYS

AT LAST — IDENTIFYING COPY NUMBER VARIATIONS WITH CONFIDENCE

The major technical challenge in copy number assessment is the ability to discriminate, with statistical confidence, between consecutive copy number states. Current methods to analyze copy number variation (CNV) include array comparative genomic hybridization (aCGH), quantitative PCR (qPCR), and sequencing. These methods lack the sensitivity and resolution needed for this fine degree of quantitative discrimination in CNV analysis. The massive partitioning of a ddPCR reaction into 20,000 droplets enables the discrimination required to resolve small fold changes.

Droplet Digital PCR copy number assays provide superior resolution and precision. A, 2-D fluorescence amplitude plot shows four replicate wells of a copy number sample duplexed with ERBB2 and RPP30 assays. The black cluster on the plot represents the negative droplets, the green cluster represents the droplets that are positive for RPP30 reference only, the blue cluster represents the droplets that are positive for ERBB2 only, and the orange cluster represents the droplets that are positive for both ERBB2 and RPP30 targets. B, copy number plot shows multiple wells at copy number 2 with precise replicate and merged well values. C, copy number plot shows multiple oncogene copy number determinations for various genes with the same NCI-H358 lung cancer sample. All error bars represent the 95% confidence interval.
With its high precision, ddPCR can be used to detect small fold changes in expression of a target gene between samples. Choose from over 40,000 existing human and mouse gene expression assays, which can be used with QX200 ddPCR EvaGreen® Supermix and modified thermal cycling conditions.

- Contrary to expectations, multiplexed ddPCR gene expression studies have similar costs to singleplex SYBR® qPCR studies.
- Singlicate multiplexed ddPCR studies make much better use of rare samples than SYBR® qPCR.
- Droplet Digital PCR allows advanced new strategies such as SELFIE Digital PCR.

Robust gene expression assays used in ddPCR with EvaGreen® provide precise quantification of 18 reference genes. A. 1-D fluorescence amplitude plot shows results of a two-step reverse transcription ddPCR reference assay panel run on human brain RNA. The black clusters on the plot represent the negative droplets and the blue clusters represent the droplets that are positive for the respective reference assay. B. concentration plot shows various gene concentrations of cDNA calculated as copies/µl on a log10 scale. C. calculated RNA concentrations in the original human brain RNA sample for each reference gene. All error bars represent the 95% confidence interval.
Droplet Digital PCR enables a rapid, cost-effective, and ultrasensitive method for detecting genome editing events created using nucleases that cause double-stranded breaks in DNA, such as CRISPR-Cas9 or other gene editing tools.

- Detect HDR (homology directed repair) and NHEJ (non-homologous end joining) events present at frequencies of ≤0.5%
- Provide absolute quantification of genome editing from as little as 5 ng of total gDNA
- Design and order ddPCR Assays to detect HDR and NHEJ edit events for any target on Bio-Rad’s Digital Assay Site

HDR and NHEJ assay readouts.

A. HDR mutation-positive control (WT + 20% gblocks gene fragment containing a single base pair substitution) with HDR GED + HDR REF Assay. The HDR edits are FAM+HEX–, while the HEX+ and FAM+HEX+ positive clusters represent the total number of copies, including WT, NHEJ, and HDR edits. **B.** NHEJ mutation-positive control (WT + 1% gblocks gene fragment containing a one base pair deletion at the predicted cut site). The WT cluster is positive for both FAM and HEX, while the NHEJ mutant single-positive droplets are positive for FAM only.
The number of targets measured in an assay need not be limited to the number of color channels available on Bio-Rad’s Droplet Digital PCR Systems. Multiple targets can be measured in a single reaction, enabling higher-order multiplexing. Various strategies can be employed to maximize data generated from each channel:

- **Amplitude-Based Multiplexing** — targets are detected via probes conjugated with a single dye at different final concentrations in an endpoint reaction.

- **Radial/Ratio-Based Multiplexing** — targets are detected using probes mixed at different probe ratios to create unique endpoint fluorescence.

- **Nondiscriminating Multiplexing** — targets are detected but not uniquely identified.

MULTIPLEXING STRATEGIES

HIGHER-ORDER MULTIPLEXING — SAME COLOR CHANNELS, MORE ANSWERS

A

Detection of four targets by amplitude multiplexing. Assay used the following ratios of FAM to HEX: T1, 1:0; T2, 0:1; T3, 1:1; T4, 1:3; T5, 0:1.

B

Detection of three targets by radial/ratio-based multiplexing. Assay used the following ratios of FAM to HEX: T1, 1:0; T2, 3:1; T3, 1:1; T4, 1:3; T5, 0:1.

C

Detection of five targets by radial/ratio-based multiplexing. Assay used the following ratios of FAM to HEX: T1, 1:0; T2, 3:1; T3, 1:1; T4, 1:3; T5, 0:1.
Bio-Rad’s QX ONE Droplet Digital PCR System offers four color channels — FAM, HEX, Cy5, and Cy5.5 — thereby providing additional multiplexing flexibility. By using Bio-Rad’s ddPCR Multiplex Supermix on the QX ONE ddPCR System, as many as eight targets can be detected and measured in a single reaction. Such advanced multiplexing is made possible using strategies such as amplitude multiplexing in conjunction with four color channels. Extract as much information as possible with high sensitivity, using as little sample as possible in a fast, cost-effective manner.

8-plex amplitude multiplexing on QX ONE System. A, detection of four targets on FAM/HEX 2-D plot: PLAU (FAM Lo), CCND1 (FAM Hi), VCL (HEX Lo), REN (HEX Hi). B, detection of four targets on Cy5/Cy5.5 2-D plot: BRCA1 (Cy5 Lo), KLF8 (Cy5 Hi), SORL1 (Cy5.5 Lo), PTEN (Cy5.5 Hi). C, measured concentration of each target in copies/µl. PTEN (Cy5.5 Hi) is reference.
Droplet Digital PCR Assays and Kits are made for numerous applications, including mutation detection, copy number determination, genome edit detection, gene expression, residual DNA quantification, and library quantification.

Multiplex Mutation Screening
For rapid screening of several key cancer mutations in a single reaction.
- High sensitivity (limit of detection ≤ 0.5%)
- Work with low amounts of input DNA without pre-amplification

Copy Number
For the detection of **SMN1** and **SMN2** gene copy number.
- Achieve superior performance with accurate and reproducible copy number calls for the gene of interest
- Perform high-throughput screening by processing several hundred samples in a single day

Residual DNA Quantification
For detection of **CHO** and **E. coli** host cell DNA.
- Highly precise, femtogram-level quantification of residual CHO or **E. coli** DNA
- Direct quantification without DNA purification step

Library Quantification
For the quantification of NGS sequencing libraries.
- Provide information about library quality, such as adapter dimers, and indicate library insert size
- Provide more efficient and consistent loading of libraries for sequencing runs
- Enable balancing of pooled library samples
FLEXIBLE ASSAY DESIGN OPTIONS

Custom
Know your oligo sequences and just want to order it from a trusted source?

Assay Design Service
Have a unique assay need? Contact your sales representative and work with a specialist. We’ll design it for you.

Expert Design
See a list of our most sought after specialty assays, such as the Microsatellite Instability Assay for detection of MSI markers (BAT25/BAT26, NR21/NR24, and Mono27).

Visit bio-rad.com/DropletDigitalPCRAssays to learn more.
BIO-RAD, DDPCR, and DROPLET DIGITAL PCR are trademarks of Bio-Rad Laboratories, Inc. in certain jurisdictions.

The QX ONE/QX200 Droplet Digital PCR Systems, and the consumables and reagents designed to work with these systems, and/or their use is covered by claims of U.S. patents and/or pending U.S. and non-U.S. patent applications owned by or under license to Bio-Rad Laboratories, Inc. See bio-rad.com/en-us/trademarks for details. Purchase of the product includes a limited, non-transferable right under such intellectual property for use of the product for internal research purposes in the field of digital PCR only. No rights are granted for diagnostic uses. No rights are granted for use of the product for commercial applications of any kind, including but not limited to manufacturing, quality control, or commercial services, such as contract services or fee for services. Information concerning a license for such uses can be obtained from Bio-Rad Laboratories. It is the responsibility of the purchaser/end user to acquire any additional intellectual property rights that may be required.

EvaGreen is a trademark of Biotium, Inc. Bio-Rad Laboratories, Inc. is licensed by Biotium, Inc. to sell reagents containing EvaGreen Dye for use in real-time PCR, for research purposes only.

SYBR is a trademark of Thermo Fisher Scientific Inc. Bio-Rad Laboratories, Inc. is licensed by Thermo Fisher Scientific Inc to sell reagents containing SYBR Green I for use in real-time PCR, for research purposes only.

All trademarks used herein are the property of their respective owner.