Research Background
Several recent studies demonstrate that defined transcription factors mediating reprogramming can potentially induce or enlarge mutations in the resulting induced pluripotent stem cells (iPSCs). In our study, DNAs were extracted from several iPSC lines and their matched progenitor somatic cells, then the whole genome was sequenced using a HiSeq 2000 sequencer (Illumina, Inc.). Thousands of single nucleotide variations (SNVs) that occurred in iPSC lines and some high-frequency SNVs, including all the coding ones and randomly selected ones in noncoding regions, were verified by Sequenom genotyping.

Application
We used a QX100™ Droplet Digital™ PCR (ddPCR™) system to test whether some observed mutations pre-existed in the starting somatic cells and to further validate the high frequency of SNVs. However, we first performed our experiment using an Applied Biosystems 7500 fast real-time PCR system. We did not trust the results because of the known limited resolution of this instrument. Fortunately, with Bio-Rad’s guidance, we applied genotyping using a QX100 ddPCR system, which allowed us not only to validate the high frequencies of SNVs in iPSC lines, but also to observe the low frequencies of the SNVs in matched progenitor somatic cell lines.

ddPCR Results
Using the QX100 ddPCR system, we further confirmed the high frequency of SNVs in iPSC lines validated by whole genome sequencing and Sequenom genotyping (Figure 1). Moreover, low-frequency SNVs in somatic cells were detected and the cell frequencies were estimated correctly (Figure 2).
In our study, two primary SNV occurrence patterns were demonstrated by the QX100 ddPCR system. One type of SNV had a low frequency only in its corresponding matched progenitor somatic cells and occurred with high frequency in iPSC lines. Another type of SNV had no detectable frequency in parent somatic cells but could be detected in subsequent iPSC lines with high frequency. This latter type is considered a de novo SNV.

“Using the QX100 ddPCR system, we confirmed the high frequency of SNVs in iPSC lines validated by whole genome sequencing and Sequenom genotyping.”

Publications

FAM and VIC are trademarks of Applera Corporation. HiSeq and Illumina are trademarks of Illumina, Inc. Sequenom is a trademark of Sequenom, Inc.
The QX100 Droplet Digital PCR system and/or its use is covered by claims of U.S. patents, and/or pending U.S. and non-U.S. patent applications owned by or under license to Bio-Rad Laboratories, Inc. Purchase of the product includes a limited, non-transferable right under such intellectual property for use of the product for internal research purposes only. No rights are granted for diagnostic uses. No rights are granted for use of the product for commercial applications of any kind, including but not limited to manufacturing, quality control, or commercial services, such as contract services or fee for services. Information concerning a license for such uses can be obtained from Bio-Rad Laboratories. It is the responsibility of the purchaser/end user to acquire any additional intellectual property rights that may be required.

For more information, visit www.bio-rad.com/ddPCRsuccessGao.