Bio-Plex Pro[™] Cell Signaling Assays Instruction Manual

For technical support, call your local Bio-Rad office, or in the U.S., call 1-800-424-6723. For research use only. Not for diagnostic procedures.

Table of Contents

Introduction	1
Principle	2
Kit Components and Storage	4
Recommended Materials	5
Assay Workflow	6
Important Considerations	7
Detailed Instructions	8
1. Prepare the Samples	8
2. Plan the Plate Layout	12
3. Prepare the Wash Method	14
4. Run the Assay	16
5. Read the Plate	21
Troubleshooting Guide	28
Plate Layout Template	31
Calculation Worksheet	32
Safety Considerations	34
Legal Notices	34
Ordering Information	35

Introduction

Bio-Plex Pro[™] Cell Signaling Assays

Cell signaling is a complex process through which cells receive and respond to stimuli from the surrounding environment. For example, circulating cytokines and chemokines elicit a response from lymphocytes by binding to cell surface receptors and activating intracellular phosphoprotein signaling cascades. This turns on and off specific genes in the nucleus — thus regulating protein expression, cell growth, proliferation, motility, and survival (Chang and Karin 2001). Aberrant signaling can lead to serious pathologies including cancer, autoimmune diseases, cardiovascular disease, and neurological disorders. Understanding which cell types and signaling pathways are involved in a disease allows researchers to develop more precisely targeted therapies with better efficacy and safety.

Bio-Plex Pro cell signaling assays are magnetic bead-based immunoassays for the detection of intracellular phosphoproteins and total target proteins in cell and tissue lysates. The assays are available as singleplex sets, which researchers can combine on their own to make a multiplex assay, or as premixed, all-in-one, multiplex kits. Phosphoprotein detection and total target detection are carried out in separate wells of a 96-well assay plate, with just 1–10 µg of sample per well.

The assays have been optimized for exceptional sensitivity, high specificity and improved performance over western blotting. The use of magnetic (MagPlex) beads allows automation of wash steps on a Bio-Plex Pro or similar wash station, which greatly simplifies assay processing and improves assay precision.

For a complete list of all Bio-Plex Pro cell signaling targets, please visit **www.bio-rad.com/bio-plex**.

References

Chang L and Karin M (2001). Mammalian MAP kinase signalling cascades. Nature 410, 37–40.

Principle

Technology

The Bio-Plex[®] suspension array system is built upon the three core elements of xMAP technology:

- Fluorescently dyed microspheres (also called beads), each with a distinct color code or spectral address to permit discrimination of individual tests within a multiplex suspension. This allows simultaneous detection of up to 500 different types of molecules in a single well of the 96-well microplate on the Bio-Plex[®] 3D system, up to 100 different types of molecules on the Bio-Plex[®] 200 system, and up to 50 different types of molecules on the Bio-Plex[®] MAGPIX[™]system
- A dedicated plate reader. The Bio-Plex 200 and Bio-Plex 3D systems are flow cytometry-based instruments with two lasers and associated optics to measure the different molecules bound to the surface of the beads. In the Bio-Plex MAGPIX system, the entire sample load volume is injected into a chamber where the beads are imaged using LED and CCD technology
- A high-speed digital signal processor that efficiently manages the fluorescence data

Assay Format

Bio-Plex Pro[™] assays are essentially immunoassays formatted on magnetic beads. The assay principle is similar to that of a sandwich ELISA (Figure 1). Capture antibodies directed against the desired biomarker are covalently coupled to the beads. Coupled beads react with the sample containing the biomarker of interest. After a series of washes to remove unbound protein, a biotinylated detection antibody is added to create a sandwich complex. The final detection complex is formed with the addition of streptavidin-phycoerythrin (SA-PE) conjugate, which serves as a fluorescent indicator or reporter.

Fig. 1. Bio-Plex sandwich immunoassay.

Data Acquisition and Analysis

Data from the reactions are acquired using a Bio-Plex system or similar Luminex-based reader. When a multiplex assay suspension is drawn into the Bio-Plex 200 reader, for example, a red (635 nm) laser illuminates the fluorescent dyes within each bead to provide bead classification and thus assay identification. At the same time, a green (532 nm) laser excites PE to generate a reporter signal, which is detected by a photomultiplier tube (PMT). A high-speed digital processor manages data output, and Bio-Plex Manager[™] software presents data as median fluorescence intensity (MFI). The relative concentration of analyte bound to each bead is proportional to the MFI of the reporter signal.

Using Bio-Plex Data Pro[™] software, data from multiple instrument runs can be combined into a single project for easy data management, quick visualization of results, and simple statistical analysis.

Kit Components and Storage

Table 1. Components required for a complete 1 x 96-well cell signaling assay.

Note that custom x-Plex[™] assays include a premixed (multiplex) set of beads and detection antibodies in an all-in-one kit.

Component	Quantity***
Singleplex* or Multiplex Set	
Coupled magnetic beads (20x)	1 tube
Detection antibodies (20x)	1 tube
Cell Signaling Reagent Kit (catalog #171-304006M)	
Cell wash buffer	1 bottle (50 ml)
Cell lysis buffer	1 bottle (50 ml)
Cell lysis factor QG	1 vial
Wash buffer	1 bottle (330 ml)
Detection antibody diluent	1 bottle (10 ml)
Resuspension buffer	1 bottle (40 ml)
Streptavidin-PE (100x)	1 tube
Flat bottom plate	1 plate
Sealing tape	1 pack of 4
Assay Quick Guide	1 booklet
Bio-Rad Cell Lysate Controls (optional)**	
Positive control (treated or untreated)	50 µg per vial
Negative control (phosphatase treated)	50 µg per vial

* Users can mix compatible singleplex sets to create their own multiplex assays.

** Refer to Table 3 to identify the appropriate controls for your phosphoprotein or total target of interest.

*** Volumes shown are approximate.

Storage and Stability

Kit contents should be stored at 4°C and never frozen. Coupled magnetic beads and streptavidin-PE should be stored in the dark. All components are guaranteed for a minimum of six months from the date of purchase when stored as specified.

Table 2. Recommended materials.

Item	Ordering Information
Bio-Plex Pro [™] Assays Quick Guide 3	Bulletin #10024930 (download at www.bio-rad.com/bio-plex)
Bio-Plex [®] 200 system or Luminex system with HTF	Bio-Rad catalog #171-000205
Bio-Plex validation kit Run monthly	Bio-Rad catalog #171-203001
Bio-Plex calibration kit Run daily to standardize fluorescence signal	Bio-Rad catalog #171-203060
Bio-Plex Pro wash station For use with magnetic bead-based assays only	Bio-Rad catalog #300-34376
Bio-Plex handheld magnetic washer For magnetic bead-based assays only	Bio-Rad catalog #171-020100
Bio-Plex Pro flat bottom plates (forty 96-well plates) For magnetic separation on the Bio-Plex Pro wash station	Bio-Rad catalog #171-025001
Microtiter plate shaker IKA MTS 2/4 shaker for 2 or 4 microplates or Banstead/(ab-L ine Model 4625 plate	IKA catalog #320-8000
shaker (or equivalent capable of 300–1,100 rpm)	Will balance work to be
Aurum[™] vacuum manifold For vacuum filtration	Bio-Rad catalog #732-6470
BR-2000 vortexer	Bio-Rad catalog #166-0610
Reagent reservoirs, 25 ml For capture beads and detection antibodies	VistaLab catalog #3054-1002 or VistaLab catalog #3054-1004
Reagent reservoir, 50 ml (for reagents and buffers)	VistaLab catalog #3054-1006
Pall Life Science Acrodisc: 32 mm PF syringe filter (0.45 µm Supor membrane)	Pall Life Sciences catalog #4654
<i>D</i> C [™] protein assay kit II	Bio-Rad catalog #500-0112
Phenylmethylsulfonyl fluoride (PMSF)	Sigma catalog #P7626
Dimethyl sulfoxide (DMSO)	Sigma catalog #D2650
Kontes tissue grinder	WWR catalog #KT885000-0002

Other: Polypropylene tubes for reagent dilutions, calibrated pipets, pipet tips, sterile distilled water, aluminum foil, paper towels, 1.5 or 2 ml microcentrifuge tubes, and a standard flat bottom microplate (for calibrating vacuum manifold).

Important Considerations

Assay Procedures

- Please pay close attention to vortexing, shaking, and incubation times and to Bio-Plex[®] reader PMT (RP1) setting, as these have been optimized specifically for the cell signaling assays
- For optimal performance, use only reagents specific for Bio-Plex Pro[™] cell signaling assays. Reagents in other Bio-Plex assay panels have not been validated for use in the cell signaling assays
- Do not reuse diluted (1x) coupled beads, detection antibodies, or streptavidin-PE
- Wash as outlined in Table 5. Incomplete washes may cause assay variation
- If the data are not acquired immediately, the assay plate may be stored at 4°C for up to 24 hr protected from light

Assay Quick Guide

Each assay kit comes complete with a printed Bio-Plex Pro Assay Quick Guide (bulletin 10024930), which can be used to prepare and run a full 1 x 96-well assay plate. Users can also download a copy at **www.bio-rad.com/bio-plex**.

Bead Regions and Multiplexing Compatibility

- Bead regions for all analytes are listed in Table 12
- Compatible singleplex assays may be mixed to create a multiplex assay
- **Do not** mix phosphoprotein assays with corresponding total target assays (for example, phospho-Akt and total Akt)

Instruments and Software

The Bio-Plex Pro cell signaling assays described in this manual are compatible with all currently available Luminex-based life science research instruments. Assays can be read and analyzed with either Bio-Plex Manager[™] software or Luminex xPONENT software (Section 5, Read the Plate, under Detailed Instructions).

Detailed Instructions

The following pages provide detailed instructions for each step of the assay procedure, including sample preparation, running the assay, and reading the plate with Bio-Plex Manager[™] and Luminex xPONENT software.

1. Prepare the Samples

Considerations

- The degree of phosphorylation of a given analyte is highly dependent on the cell type and cell stimulation or treatment conditions
- Cell lines may vary in their signaling responses to the same stimulation
- The suggested final protein concentration range in the assay is 3–200 μg/ml (0.15–10 μg per assay well) except for PI3K p85 (Tyr⁴⁵⁸) which is 31–1,000 μg/ml (1.6–50 μg/well)
- Optimization of cell lysate concentration may be needed based on target protein expression levels
- Cell lysate should be clear of particulate matter before use

Cell Lysates

The Bio-Plex Pro[™] cell signaling reagent kit (catalog #171-304006M) is required for preparing lysates derived from cell culture and tissue samples. Just before use, prepare an adequate volume of cell lysis buffer by adding PMSF and cell lysis factor QG.

- Prepare 500 mM PMSF by dissolving 0.436 g PMSF in 5 ml DMSO. (Store as aliquots at -20°C). Add PMSF to the cell lysis buffer at a final concentration of 2 mM
- Reconstitute cell lysis factor QG to 100x with 250 µl of diH₂O and vortex to mix. Add the reconstituted factor to the cell lysis buffer to a final 1x working concentration

Adherent Cells

- Stop the treatment reaction by aspirating the culture medium and quickly rinsing the cells with ice-cold cell signaling **cell wash buffer** (bottle with the **blue cap**). The volume of buffer required is the same as the volume of aspirated cell culture medium. Keep the cells on ice during all steps when possible.
- 2. Completely remove the buffer before lysing the cells.
- Immediately add the cell lysis buffer to the cells. The amount of lysing solution needed depends on the cell density in the culture vessel (for example, add 1.5–2 ml of lysis buffer to a 10 cm dish that is ~80% confluent).

Note: It may be necessary to lyse the samples with different volumes of cell lysis solution to obtain the specified protein concentration range.

- 4. Scrape the cells with a cell scraper, collect cell suspension into an appropriately sized tube and gently rock for 20 min at 4°C.
- 5. Perform either of the following to remove insoluble cellular particulates:
 - Centrifuge the cell lysate solution at 4,500 x g for 20 min at 4°C, and then filter the lysate using a 0.45 µm syringe filter
 - If the lysate volume is not adequate for filtration, centrifuge the lysate at 15,000 x g for 10 min at 4°C using a benchtop microcentrifuge
- 6. Collect the filtered lysate or supernatant after centrifugation.
- Measure protein concentration using Bio-Rad's DC[™] protein assay kit and if needed, adjust protein concentration with cell lysis buffer containing PMSF and cell lysis factor QG.
- The suggested working protein concentration range for Bio-Plex[®] cell signaling assays is 3–200 μg/ml (0.15–10 μg per assay well).
- 9. Store the aliquoted lysates at –70°C until ready to use.

Suspension Cells

- 1. Collect cell suspension and pellet the cells by spinning at 1,000 x g for 5 min at 4°C.
- 2. Aspirate off cell culture medium completely.
- 3. Wash by resuspending the cells with ice-cold **cell wash buffer** (bottle with the **blue cap**).
- 4. Centrifuge the cells at $1,000 \times g$ for 5 min at 4°C.
- 5. Completely remove the buffer.
- 6. Immediately add the proper volume of cell lysis buffer and gently rock for 20 min at 4°C.
- 7. Remove insoluble cellular particulates as described in Adherent Cells step 5 above.
- 8. Follow Adherent Cells steps 6–9 above.

Tissue Samples

- Cut the tissue into small pieces (~3 x 3 mm) for ease of handling and blood removal. If necessary, wash the tissue with ice-cold **cell wash buffer** (bottle with the **blue cap**) to completely remove all blood. Then transfer the tissue to a 2 ml tissue grinder.
- 2. Add an adequate volume of cell lysis solution and grind the tissue sample on ice using approximately 20 strokes.

Note: It may be necessary to lyse the samples with different volumes of cell lysis solution to obtain the specified protein concentration range.

- Transfer the ground tissue to a clean microcentrifuge tube and freeze sample at –70°C. Freezing and thawing samples helps increase cell lysis effects.
- Thaw the sample and sonicate on ice (for example, with a Sonifier 450: Duty Cycle = 40, Output = 1, Pulse Sonicating = 18x).
- 5. Remove insoluble cellular matter as in Adherent Cells step 5 above.
- 6. Follow Adherent Cells steps 6–9 above.

Bio-Rad Cell Lysate Controls

The positive and negative cell lysate controls are used for qualitative verification of assay performance. Refer to Table 3 to select the appropriate controls for your phosphoprotein or total target of interest.

Phosphoprotein of Intere	st	Lysate Control	Catalog #
Akt (Ser ⁴⁷³) Akt (Thr ³⁰⁸) Erk1/2 (Thr ²⁰² /Tyr ²⁰⁴ , Thr ¹⁸⁵ /Tyr ¹	GSK-3α/β (Ser ²¹ /Ser ⁹) MEK1 (Ser ²¹⁷ /Ser ²²¹) ⁸⁷)	EGF-treated HEK-293	171-YZ0001
ATF-2 (Thr ⁷¹) c-Jun (Ser ⁶³) CREB (Ser ¹³³)	JNK (Thr ¹⁸³ /Tyr ¹⁸⁵) p38 MAPK (Thr ¹⁸⁰ /Tyr ¹⁸²) p53 (Ser ¹⁵)	UV-treated HEK-293	171-YZ0009
Btk (Tyr ²²³) Lyn (Tyr ⁵⁰⁷)	PI3K p85 (Tyr ⁴⁵⁸) Syk (Tyr ³⁵²)	H ₂ O ₂ -treated Ramos	171-YZ0011
c-Abl (Tyr ²⁴⁵)		Untreated K-562	171-YZT003
EGFR (Tyr ¹⁰⁶⁸)	EGFR (Tyr ¹¹⁷³)	EGF-treated HeLa	171-YZ0002
HER-2 (Tyr ¹²⁴⁸) HSP27 (Ser ⁷⁸)	p90 RSK (Ser ³⁸⁰) S6 ribosomal protein (Ser ²³⁵ /Ser ²³⁶)	EGF-treated SK-BR-3	171-YZ0003
IGF-1R (Tyr ¹¹³¹)	IR-β (Tyr ¹¹⁴⁶)	IGF-1-treated HEK-293	171-YZ0005
lκB-α (Ser ³² /Ser ³⁶) NF-κB p65 (Ser ⁵³⁶)	Smad2 (Ser ⁴⁶⁵ /Ser ⁴⁶⁷)	TNF- α -treated HeLa	171-YZ0008
p70 S6 Kinase (Thr ⁴²¹ /Ser ⁴²⁴)	p70 S6 Kinase (Thr ³⁸⁹)	NGF-β-treated PC12	171-YZ0006
BAD (Ser ¹³⁶) IRS-1 (Ser ⁶³⁶ /Ser ⁶³⁹) mTOR (Ser ²⁴⁴⁸)	PDGFR-α (Tyr ⁷⁵⁴) PDGFR-β (Tyr ⁷⁵¹) PTEN (Ser ³⁸⁰)	PDGF-treated NIH3T3	171-YZ0007
Stat1 (Tyr ⁷⁰¹) Stat3 (Ser ⁷²⁷)	Stat3 (Tyr705)	IFN α -treated HeLa	171-YZ0004
Src (Tyr ⁴¹⁶)		Src-transfected NIH3T3	171-YZ0013
VEGFR-2 (Tyr ¹¹⁷⁵)		VEGF-treated HUVEC	171-YZ0010
ZAP70 (Tyr ³¹⁹)		H ₂ O ₂ -treated Jurkat	171-YZ0012
Negative control for all phosp	hoprotein assays	Phosphatase-treated HeLa	171-YZB001
			continues

Table 3. Selection guide for Bio-Rad cell lysate controls.

Total Target		Lysate Control	Catalog #
Total Akt Total Erk 1/2 Total GSK-3β Total ΙκΒ-α Total JNK Total MEK1	Total mTOR Total p38 MAPK Total p70 S6 Kinase Total PTEN Total Smad2 Total IGF-1R	Untreated HeLa	171-YZT002
Total Btk		H ₂ O ₂ -treated Ramos	171-YZ0011
Total c-Jun Total CREB		Untreated HEK-293	171-YZT001
Total HER-2		EGF-treated SK-BR-3	171-YZ0003
Total Src		Src-transfected NIH3T3	171-YZ0013
Total ZAP-70		H ₂ O ₂ -treated Jurkat	171-YZ0012
Negative control for all	total target assays	Detection antibody diluent	t
House Keeping Prot	ein		
Human GAPDH	β-Actin	Untreated HeLa	171-YZT002
Negative control for all	total target assays	Detection antibody diluent	t

Table 3. Selection guide for Bio-Rad cell lysate controls (continued).

2. Plan the Plate Layout

Prior to running the assay, determine the total number of wells in the experiment using the Plate Layout Template on page 30 or the Plate Formatting tab in Bio-Plex Manager. A suggested plate layout is shown in Figure 2, with all conditions in duplicate. Please note that the Bio-Plex 200 instrument reads the plate vertically.

1. Assign blank, negative control, positive control, and samples accordingly.

Note: When designating blank using **B**, Bio-Plex Manager software will automatically subtract the blank MFI value from all other assay wells.

 Once the total number of wells is known, see Tables 6–9 or the Calculation Worksheet on pages 32–33 to determine the required volumes of beads, detection antibodies, and streptavidin-PE to use. Note that 20–25% excess volume is included in the calculations to compensate for transfer loss.

Fig. 2. Suggested plate layout. For detailed instructions on plate formatting in Bio-Plex Manager, see Section 5, Read the Plate.

3. Prepare the Wash Method

The cell signaling assays are compatible with both magnetic separation and vacuum filtration methods. However, for best results, we recommend performing the assays in a flat bottom plate with magnetic separation.

The second s			
Wash Method	Wash Station	Assay Plate	
Magnetic separation	Bio-Plex Pro Bio-Plex handheld magnetic washer	Flat bottom plate	
Vacuum filtration	Vacuum manifold (manual)	Filter plate	

Table 4. Summary of compatible wash stations and plate types.

Setting up the Bio-Plex Handheld Magnetic Washer

Place an empty flat bottom plate on the magnetic washer by sliding it under the retaining clips. Push the clips inward to secure the plate. Make sure the plate is held securely. For detailed instructions, refer to the user guide (bulletin 10023087).

Setting up the Bio-Plex Pro

The wash station should be primed before use. See bulletin 5826.

- 1. Install the appropriate plate carrier on the wash station.
- 2. Use the Prime procedure to prime channel 1 with wash buffer.

Note:

- Before using the Bio-Plex Pro wash station, make sure to define/edit a program with the correct settings for cell signaling assays (Table 5)
- Existing cytokine assay programs: MAGx2, MAGx3, VACx2, and VACx3 should **not** be used

Refer to the wash station instruction manual (bulletin 10013125), or contact Bio-Rad Technical Support for more information on defining, editing, or importing wash station programs.

Bio-	Plex Pro V	Vash Station/Hand	held Magnet/Vacu	um Manifold*	
	Wash Program Settings and Manual Wash Steps				
Assay Step # of Washes Volume, µl Magnetic Soak, mir					
1. Add beads to p	olate	2	200	1	
2. Sample incuba	tion	3	200	1	
3. Detection Ab in	cubation	3	200	1	
4. SA-PE incubati	ion	3	200	1	

Table 5. Summary of wash steps and settings. After each assay incubation step, perform the appropriate wash step as shown below.

* No magnetic soak for vacuum filtration.

Setting up a Vacuum Manifold

Calibrate the vacuum manifold by placing a standard 96-well flat bottom plate on the unit and adjusting the pressure to between -1 and -3" Hg. In general, 200 µl liquid should take 5–6 sec to clear the well. For detailed instructions, refer to bulletin 10005042.

Using a Vacuum Manifold

- After each incubation, place the filter plate on a calibrated vacuum apparatus and remove the liquid by vacuum filtration
- To wash, add 200 µl wash buffer to each well and remove the liquid as before. Ensure that all wells are exposed to the vacuum
- Thoroughly blot the bottom of the filter plate with a clean paper towel between each vacuum step to prevent cross contamination
- Place the assay plate on the plastic plate holder/tray as needed
- Before each incubation, gently cover the plate with a new sheet of sealing tape. Avoid pressing down over the wells to prevent leaking from the bottom

4. Run the Assay

Considerations

- Bring all assay components and samples to room temperature before use
- Use calibrated pipets and pipet carefully, avoiding bubbles
- Assay incubations are carried out in the dark. Cover the plate with aluminum foil or otherwise protect from extended exposure to light

DAY 1

Prepare Samples and Controls

- 1. Thaw sample lysates and keep on ice (see Section 1, Prepare the Samples, for lysate preparation).
- Reconstitute lyophilized cell lysate control with 250 µl of diH₂O, vortex for 5 sec to mix, and incubate at room temperature for 20 min. Protein concentration is now 200 µg/ml. Unused lysate can be stored at –20°C for 3 months.
- Centrifuge all samples and lysate controls at 15,000 x g for 10 min at 4°C before dispensing to wells.

Prepare and Add Coupled Beads and Samples

- 4. Use Tables 6 and 7 or the Calculation Worksheet on pages 32–33 as a reference to calculate the volume of coupled beads and wash buffer needed.
- 5. Add the required volume of wash buffer to an appropriately-sized polypropylene tube. This will be used to dilute beads to 1x.
- Vortex the 20x stock of coupled beads at mid speed for 30 sec. Carefully open the cap and pipet any liquid trapped in the cap back into the tube. This is important to ensure maximum bead recovery. Do not centrifuge the vial; doing so will cause the beads to pellet.

7. Dilute coupled beads to 1x by pipetting the required volume into the tube containing wash buffer. **Vortex**.

Each well of the assay requires 2.5 μl of the 20x stock adjusted to a final volume of 50 μl in wash buffer.

Note: To minimize volume loss, use a 200–300 μ l capacity pipet to remove beads from the 20x stock tube. If necessary, perform the volume transfer in 2 steps. **Do not** use a 1,000 μ l capacity pipet and/or wide bore pipet tip.

8. Protect the beads from light with aluminum foil. Equilibrate to room temperature prior to use.

Preparing 1x coupled beads from 20x stock (includes 20% excess volume):

# of Wells	20x Beads, µl	Wash Buffer, µl	Total Volume, µl
96	288	5,472	5,760
48	144	2,736	2,880

Table 6. Premixed panel or one singleplex assay.

Table 7. Mixing two singleplex assays.

# of Wells	20x Beads, µl Singleplex #1	20x Beads, µl Singleplex #2	Wash Buffer, μl	Total Volume, µl
96	288	288	5,184	5,760
48	144	144	2,592	2,880

- 9. Cover unused wells of the assay plate with sealing tape.
- 10. Prewet the filter plate. Skip this step if using a flat bottom plate.
 - a. Prewet the wells with 200 µl wash buffer and remove the liquid by vacuum filtration. Dry the bottom of the filter plate thoroughly by blotting on a clean paper towel.
- Vortex the diluted (1x) beads for 15 sec at medium speed. Transfer
 50 µl to each well of the assay plate.
- 12. Wash the plate two times with 200 μl wash buffer according to your method of choice.

- Gather the samples, Bio-Rad cell lysate controls, and blank. Use detection antibody diluent as the blank. Transfer 50 μl of each sample or blank to the appropriate wells of the plate.
- 14. Cover with a new sheet of sealing tape and **incubate** in the dark **overnight (15–18 hr)** at room temperature with shaking.

Note: Fully resuspend the beads/sample mixture by vigorously shaking at **900–1,100 rpm** for **30 sec**. Slowly ramp up to speed to avoid splashing. Then turn down to **300–450 rpm** for the specified incubation time.

DAY 2

Prepare Instrument and Wash Method

- 15. Start up, warm up, and calibrate the Bio-Plex system as described in Section 5, Read the Plate. This may take up to 30 min.
- 16. Meanwhile bring all buffers and diluents to room temperature.
- 17. Prepare the wash method as described in Section 3, Prepare the Wash.

Prepare and Add Detection Antibodies

- Use Tables 8 and 9 or the Calculation Worksheet on pages 32–33 to calculate the volume of detection antibodies and Bio-Plex detection antibody diluent needed. Detection antibodies should be prepared 10 min before use.
- 19. Add the required volume of Bio-Plex detection antibody diluent to an appropriately sized polypropylene tube.
- 20. Vortex the 20x stock of detection antibodies for **15–20 sec** at medium speed, then perform a quick spin to collect the entire volume at the bottom of the tube.
- Dilute detection antibodies to 1x by pipetting the required volume into the tube containing detection antibody diluent. Vortex.
 Each well of the assay requires 1.25 µl of the 20x stock adjusted to a final volume of 25 µl in detection antibody diluent.

Preparing 1x detection antibodies from 20x stock (includes 25% excess volume):

# of Wells	20x Detection Antibodies, µl	Detection Antibody Diluent, µl	Total Volume, μl	
96	150	2,850	3,000	
48	75	1,425	1,500	

Table 8. Premixed panel or one singleplex assay.

Table 9. Mixing two singleplex assays.

# of Wells	20x Detection Antibodies, μl Singleplex #1	20x Detection Antibodies, µl Singleplex #2	Detection Antibody Diluent, µl	Total Volume, µl
96	150	150	2,700	3,000
48	75	75	1,350	1,500

- 22. After the overnight incubation, slowly remove and discard the sealing tape.
- Wash the plate three times with 200 μl wash buffer according to your method of choice.
- 24. Vortex the diluted (1x) detection antibodies gently for **5 sec** and transfer **25 μl** to each well of the assay plate.
- 25. Cover with a new sheet of sealing tape and incubate in the dark for 30 min at room temperature with shaking. Fully resuspend the beads/ detection antibody mixture by shaking at 900–1,100 rpm for 30 sec. Then turn down to 300–450 rpm for the specified incubation time.

Prepare and Add Streptavidin-PE (SA-PE)

26. While detection antibodies are incubating, use Table 10 or the Calculation Worksheet on pages 32–33 to calculate the volume of SA-PE and detection antibody diluent needed. SA-PE should be prepared **10 min before use**.

- 27. Add the required volume of detection antibody diluent to an appropriately sized polypropylene tube. This will be used to dilute SA-PE to 1x.
- 28. **Vortex** the 100x stock of SA-PE for **5 sec** at medium speed. Perform a quick spin to collect the entire volume at the bottom of the vial.
- 29. Dilute SA-PE to 1x by pipetting the required volume into the tube containing detection antibody diluent. **Vortex** and protect from light until ready to use.

Each well of the assay requires 0.5 μl of the 100x stock adjusted to a final volume of 50 μl in detection antibody diluent.

Table 10. Preparing 1x SA-PE from 100x stock (includes 25% excess volume).

# of Wells	100x SA-PE, μΙ	Detection Antibody Diluent, µl	Total Volume, µl
96	60	5,940	6,000
48	30	2,970	3,000

- 30. After detection antibody incubation, slowly remove and discard the sealing tape.
- Wash the plate three times with 200 μl wash buffer according to your method of choice.
- Vortex the diluted (1x) SA-PE at medium speed for 5 sec and transfer 50 µl to each well of the assay plate.
- 33. Cover with a new sheet of sealing tape and incubate in the dark for 10 min at room temperature with shaking. Fully resuspend the beads/ SA-PE mixture by shaking at 900–1,100 rpm for 30 sec. Then turn down to 300–450 rpm for the specified incubation time.
- 34. After the streptavidin-PE incubation step, slowly remove and discard the sealing tape.
- 35. Wash the plate three times with 200 μl wash buffer according to your method of choice.

- 36. To resuspend beads for plate reading, add 125 μl resuspension buffer to each well. Cover the plate with a new sheet of sealing tape and shake at 900–1,100 rpm for 30 sec.
- 36. Slowly remove the sealing tape and place the plate on the reader to acquire data.

Instrument	RP1 (PMT)	DD Gates	Bead Events
Bio-Plex 100, 200*	High	5,000 (low), 25,000 (high)	50
Bio-Plex 3D*	Enhanced	Select MagPlex beads	50
Bio-Plex MAGPIX*	N/A, use default instrumen	it settings	

Table 11. Read the plate using	the appropriate	instrument settings.
--------------------------------	-----------------	----------------------

* Or similar Luminex-based system.

5. Read the Plate

Bio-Plex Manager software is recommended for all Bio-Plex Pro assay data acquisition and analysis. Instructions for Luminex xPONENT software are also included. For instructions on using other xMAP system software packages, contact Bio-Rad Technical Support or your regional Bio-Rad field applications specialist.

Prepare Instrument

Start up and calibrate the Bio-Plex 100/200 or similar system with Bio-Plex Manager software prior to setting up the assay. **The calibration kit** should be run daily or before each use of the instrument to standardize the fluorescent signal. To prepare either a Bio-Plex 3D or Bio-Plex[®] MAGPIX[™] reader, consult its respective user manual. For instructions on using other xMAP system software packages, contact Bio-Rad Technical Support.

The validation kit should be run monthly to ensure optimal performance of fluidics and optics systems. Refer to either the software manual or online Help for instructions on how to conduct validation.

Start Up System (Bio-Plex 100, 200, or similar)

- Empty the waste bottle and fill the sheath fluid bottle before starting if high throughput fluidics (HTF) are not present. This will prevent fluidic system backup and potential data loss.
- 2. Turn on the reader, XY platform, and HTF (if included). Allow the system to warm up for 30 min (if not already done).
- Select Start up and follow the instructions. If the system is idle for 4 hr without acquiring data, the lasers will automatically turn off. To reset the 4-hr countdown, select Warm up and wait for the lasers/optics to reach operational temperature.

Calibrate System

- 4. Select Calibrate and confirm that the default values for CAL1 and CAL2 are the same as the values printed on the bottle of Bio-Plex calibration beads. Use the Bio-Plex system low RP1 target value even if the assays will be run at high RP1. Bio-Plex Manager version 6.1 and higher will automatically calibrate at both high and low RP1 settings although only the low RP1 value option is listed under CAL2.
- 5. Select **OK** and follow the software prompts for step-by-step instructions for CAL1 and CAL2 calibration.

Note: In Bio-Plex Manager version 6.1 and higher, startup, warm up, and calibration can be performed together by selecting the **Start up and calibrate** icon.

Prepare Protocol in Bio-Plex Manager Software Version 6.0 and Higher

The protocol should be prepared in advance so that the plate is read as soon as the experiment is complete.

A protocol file specifies the analytes in the assay, the plate wells to be read, sample information, and instrument settings.

Bio-Plex Manager software versions 6.0 and higher contain protocols for most Bio-Plex assays. Choose from available protocols or create a new

protocol. To create a new protocol, select **File**, then **New** from the main menu. Locate and follow the steps under **Protocol Settings**.

- 6. Click **Describe Protocol** and enter information about the assay (optional).
- 7. Click **Select Analytes** and create a new panel. Visually confirm the selected analytes and proceed to step 8.
 - a. Click the Add Panel button in the Select Analytes toolbar. Enter a new panel name. Select Bio-Plex Pro Assay (Magnetic) or MagPlex Beads (Magnetic) from the assay dropdown list. If using Bio-Plex Manager version 5.0 or lower, select MagPlex from the assay dropdown list.
 - b. Click the **Add** button. Enter the bead region number and name for the first analyte. Click **Add Continue** to repeat for each analyte in the assay. Refer to the bead regions listed in Table 12.
 - c. Click the **Add** button when the last analyte has been added and click **OK** to save the new panel.
 - d. Highlight analytes from the Available list (left) and move to the Selected list (right) using the Add button. To move all analytes at once, simply click the Add All button.
 - e. If some of the analytes need to be removed from the Selected list, highlight them and select **Remove**. If desired, it is possible to rename the panel by clicking **Rename Panel** and entering a new panel name.
- 8. Click **Format Plate**, and format the plate according to the plate layout created in Section 2, Plan the Plate Layout. To modify the plate layout, follow the steps below (see Figure 3).
 - a. Select the **Plate Formatting** tab.
 - b. Select the blank icon <
 and drag the cursor over all the wells that contain blanks. Repeat this process for Controls
 and Samples
 Note that Bio-Plex Manager automatically subtracts the blank MFI value from all other assay wells.

Phosphoprotein Targets	Bead Region	Phosphoprotein Targets	Bead Region
Akt (Ser473)	75	mTOR (Ser ²⁴⁴⁸)	46
Akt (Thr ³⁰⁸)	75	NF-κB p65 (Ser ⁵³⁶)	37
ATF-2 (Thr ⁷¹)	20	p38 MAPK (Thr ¹⁸⁰ /Tyr ¹⁸²)	36
BAD (Ser ¹³⁶)	26	p53 (Ser ¹⁵)	53
Btk (Tyr ²²³)	39	p70 S6 Kinase (Thr ³⁸⁹)	55
c-Abl (Tyr ²⁴⁵)	45	p70 S6 Kinase (Thr ⁴²¹ /Ser ⁴²	4) 55
c-Jun (Ser ⁶³)	56	p90 RSK (Ser ³⁸⁰)	35
CREB (Ser ¹³³)	19	PDGFR-α (Tyr ⁷⁵⁴)	28
EGFR (Tyr ¹⁰⁶⁸)	44	PDGFR-β (Tyr ⁷⁵¹)	57
EGFR (Tyr ¹¹⁷³)	44	PI3K p85 (Tyr ⁴⁵⁸)	54
Erk1/2 (Thr202/Tyr204, Thr185/Tyr204, Thr1856/Tyr204, Thr1856/Tyr204, Thr1856/Tyr204, Thr1856/Tyr204, Thr1856/Tyr204, Thr1856/Tyr204, Thr1856/Tyr204, Thr1856/Tyr204, Thr1866/Tyr204, Thr1856/Tyr204, Thr1866/Tyr204, Thr	yr ¹⁸⁷) 38	PTEN (Ser ³⁸⁰)	22
GSK-3α/β (Ser ²¹ /Ser ⁹)	18	S6 ribosomal protein (Ser235/	Ser ²³⁶) 74
HER-2 (Tyr ¹²⁴⁸)	30	Smad2 (Ser ⁴⁶⁵ /Ser ⁴⁶⁷)	14
HSP27 (Ser78)	51	Src (Tyr ⁴¹⁶)	42
IGF-IR (Tyr ¹¹³¹)	43	Stat1 (Tyr ⁷⁰¹)	61
IR-b (Tyr ¹¹⁴⁶)	43	Stat3 (Ser727)	52
IRS-1 (Ser636/Ser639)	76	Stat3 (Tyr ⁷⁰⁵)	52
$l\kappa B-\alpha$ (Ser ³² /Ser ³⁶) 67		Syk (Tyr ³⁵²)	65
JNK (Thr ¹⁸³ /Tyr ¹⁸⁵)	34	VEGFR-2 (Tyr ¹¹⁷⁵)	29
Lyn (Tyr ⁵⁰⁷)	33	ZAP-70 (Tyr ³¹⁹)	64
MEK1 (Ser ²¹⁷ /Ser ²²¹)	27		
Total Targets	Bead Region	Total Targets	Bead Region
Akt	75	JNK	34
Btk	39	MEK1	27
c-Jun	56	mTOR	46
CREB	19	p38 MAPK	36
Erk 1/2	38	p70 S6 Kinase	55
GSK3β	18	PTEN	22
HER-2	30	Smad2	14
IGF-1R	43	Src	42
ΙκΒα	67	ZAP-70	64
Housekeeping Proteins	Bead Region	Housekeeping Proteins	Bead Region
Human GAPDH	21	β-Actin	47

Table 12. Bead regions for cell signaling assays.

9. Click **Enter Controls Info**, and for user-specified controls, select an analyte from the dropdown menu, then enter a description and concentration. Repeat for each additional analyte in the assay.

For Bio-Rad cell lysate controls, format the appropriate wells as controls, enter descriptions, but leave the concentrations blank. Alternatively, both blanks and controls can be formatted as samples with clear descriptions.

Bio-Plex Manager Desktop	- [Protoco	11 - Form	at Plat	e]									-
File Edit View Forma	at Options	Windo	w He	lp									
D 📽 🖬 🔿 🙆	P												
	• ® (c s		R									
Protocol Settings	Plate Fo	ormatting	Plat	e Grou	oinas								
			-			_	_	_					
1. Describe Protocol		1	2	3	4	5	6	7	8	9	10	11	12
00000	A	⊗	2	6	10	14	18	22	26	30	34	38	42
2. Select Analytes	в	⊗	2	6	10	14	18	22	26	30	34	38	42
3. Format Plate	с	1	3	7	11	15	19	23	27	31	35	39	43
4 Enter Standards Info	D	1	3	7	11	15	19	23	27	31	35	39	43
Ħc	Е	2	4	8	12	16	20	24	28	32	36	40	44
5. Enter Controls Info	F	2	4	8	12	16	20	24	28	32	36	40	44
6. Enter Sample Info	G	1	5	9	13	17	21	25	29	33	37	41	45
*	н	1	5	9	13	17	21	25	29	33	37	41	45
7. Run Protocol													

Fig. 3. Plate formatting.

- 10. Click **Enter Sample Info** and enter sample information and the appropriate dilution factor if any.
- 11. Click Run Protocol and confirm that the assay settings are correct.
 - Refer to Table 11 for the recommended RP1 (PMT) setting. Protocols using alternative settings should be validated by the end user.
 - b. Confirm that data acquisition is set to 50 beads per region. In Advanced Settings, confirm that the bead map is set to 100 region, the sample size is set to 50 µl, and the doublet discriminator (DD) gates are set to 5,000 (Low) and 25,000 (High). In Bio-Plex Manager software versions 4.0, 4.1, 4.1.1, and 5.0, check Override Gates and set the DD gate values as indicated.
 - Select Start, name and save the .rbx file, and begin data acquisition. The Run Protocol pop-up screen will appear. Click Eject/Retract to eject the plate carrier.

Acquire Data

- 1. Shake the assay plate at **900–1,100 rpm** for **30 sec**, and visually inspect the plate to ensure that the assay wells are filled with buffer. Slowly remove the sealing tape before placing the plate on the plate carrier.
- 2. Click **Run Protocol**, and on the pop-up screen, select **Load Plate** and click **OK** to start acquiring data.
- 3. Use the **Wash Between Plates** command after every plate run to reduce the possibility of clogging the instrument.
- If acquiring data from more than one plate, empty the waste bottle and refill the sheath bottle after each plate (if HTF is not present). Select Wash Between Plates and follow the instructions. Then repeat the Prepare Protocol and Acquire Data instructions.
- 5. When data acquisition is complete, select **Shut Down** and follow the instructions.

Reacquire Data

It is possible to acquire data from a well or plate a second time using the **Rerun/Recovery** mode located below Start in the Run Protocol step. Any previous data will be overwritten unless the second run is saved under a different file name.

- 1. Check the wells from which data will be reacquired.
- 2. Aspirate the buffer with the wash method of choice, but do not perform wash step.
- Add 100 μl of resuspension buffer to each well. Cover the plate with a new sheet of sealing tape and shake plate at 900–1,100 rpm for 30 sec.
- Repeat the Acquire Data steps to reacquire data. The data acquired should be similar to those acquired initially; however, the acquisition time will be extended because the wells have fewer beads.

Luminex xPONENT Software

Although guidelines are provided here, consult the xPONENT software manual for more details. Perform a system initialization with Luminex's calibration and performance verification kit, as directed by Luminex. Select **Batches** to set up the protocol and follow the information under **Settings**.

Note: The instrument settings described below apply to Luminex 100/200 and FLEXMAP 3D or Bio-Plex[®] 3D instruments. For the Bio-Plex MAGPIX reader, use the default instrument settings.

- 1. Select **MagPlex** as the bead type for magnetic beads. This automatically sets the DD gates.
- 2. Volume = 50 μl.
- 3. Refer to Table 11 to select the appropriate PMT setting for your instrument.
- 4. Plate name: 96-well plate.
- 5. Analysis type: Qualitative.

Select Analytes to set up the panel.

- 1. Enter **50** in the Count field.
- 2. Select the bead region and enter the analyte name.
- 3. Click **Apply all** for Units and Counts.

Select Stds and Ctrls.

1. Enter descriptions and other information as applicable.

After the assay is complete, select **Results**, then select **Saved Batches**.

Troubleshooting Guide

This troubleshooting guide addresses problems that may be encountered with Bio-Plex Pro[™] assays. If you experience any of the problems listed below, review the possible causes and solutions provided. Suboptimal assay performance may also be due to the Bio-Plex[®] suspension array reader. To eliminate this possibility, use the Bio-Plex validation kit to assist in determining if the array reader is functioning properly.

Problem	Possible Causes	Possible Solutions		
Low signals for experimental samples	Sample protein concentration too low or too high Poor cell lysate quality	Verify sample protein concentration is within assay range. Optimization of protein concentration may be needed based on targeted protein expression level Prepare fresh lysate accordingly		
Low signals for experimental samples and Bio-Rad cell lysate controls	Incorrect dilution of detection antibody or streptavidin-PE	Check the calculations and be careful to add the correct volumes		
	Expired Bio-Plex reagents were used	Check that reagents have not expired. Use new or non-expired components		
	Incorrect incubation temperature	Incubations should be at room temperature (20–22°C)		
	Insufficient incubation time	Adhere to the recommended incubation time		
	Beads lost	Use recommended magnetic washer settings with correct magnet soaking time		

Table 13. Troubleshooting guide.

continues

Problem	Possible Causes	Possible Solutions
Low bead count	Cell debris in lysate not cleared	Centrifuge at 15,000 x g for 10 min at 4°C to remove cellular debris
	Assay plate not shaken enough prior to reading	Shake plate at 900–1,100 rpm for 30 sec before data acquisition
	Clogged reader	Refer to the troubleshooting guide in the Bio-Plex system hardware instruction manual (bulletin 10005042)
	Miscalculation of bead dilution	Check the calculations and be careful to add the correct volumes
	Clumping of stock beads in vials	Vortex the stock vial at different angles for 30 sec at medium speed before aliquoting beads
	Vacuum setting too high during suction of assay plate	Adjust pressure to -1 to -3" Hg. Generally, 100 µl liquid should take 3-4 sec to clear from the well
	Reader needle height incorrect	Adjust the needle height to coincide with the plate type provided in the kit
	Beads lost	Use recommended magnetic washer settings with correct soaking time

Table 13. Troubleshooting guide (continued).

continues

Problem	Possible Causes	Possible Solutions		
High background	Prolonged incubation of detection antibodies and/or streptavidin-PE	Follow the procedure incubation time precisely		
	Wash steps performed incorrectly or insufficient washing volume	Perform washes as described in the assay instructions		
High assay CV	Bottom of filter plate not dry	Dry the bottom of the filter plate with absorbent paper towel (preferably lint-free) to prevent cross-well contamination		
	Contamination with wash buffer during wash steps	Be careful not to splash wash buffer from well to well. Filter wells completely to remove residual buffer if using filter plate. Reduce microplate shaking speed to minimize splashing		
	Cell debris in lysate not cleared	Centrifuge at 15,000 x g for 10 min at 4°C to remove cellular debris		
	Shaking speed too high during assay incubation	Fully resuspend bead mixture at 900–1,100 rpm for 30 sec, then turn down to 300–450 rpm for the specified incubation time		
	Reagents and assay components not equilibrated to room temperature	Bring all reagents and assay components to room temperature prior to dispensing		

Table 13. Troubleshooting guide (continued).

Plate Layout Template

Calculation Worksheet

If using either a premixed panel or one singleplex assay, follow these instructions.

Plan the plate layout and enter the number of wells to be used in the assay:

1. Determine the volume of 1x coupled beads needed.

a. Each well requires 50 µl of coupled beads (1x): $___ x 50 µl = ___ µl$ b. Include 20% excess to ensure enough volume: $__ µl x 0.20 = __ µl$ c. Total volume of 1x coupled beads: $__ µl + __ µl = __ µl$ d. Volume of **20x coupled beads** stock: $__ µl/20 = __ µl$ e. Volume of **wash buffer** required: $__ µl - __ µl = __ µl$

2. Determine the volume of 1x detection antibody needed.

a. Each well requires 25 µl detection antibodies (1x): x 25 µl = µ	d
1 7	
b. Include 25% excess to ensure enough volume: μ l x 0.25 = μ	μΙ
7 8	
c. Total volume of 1x detection antibodies: µl + µl = µl	
7 8 9	
d. Volume of 20x detection antibodies required: μ l/20 = μ l	
9 10	
e. Volume of detection antibody diluent required: $___ \mu I - ___ \mu I = ___ \mu I$	
9 10 11	

3. Determine the volume of 1x streptavidin-PE needed.

If **mixing two or more singleplex assays**, follow these instructions.

Enter the number of wells to be used in the assay:

1. Determine the volume of 1x coupled beads needed.

Safety Considerations

Eye protection and gloves are recommended while using this product. Consult the MSDS for additional information.

Human source material. Treat as potentially infectious.

The lysates provided with Bio-Plex Pro[™] cell signaling assays contain components of human origin. The components are known to contain an agent that requires handling at Biosafety Level 2 containment as defined by U.S. government publication, *Biosafety in Microbiological and Biomedical Laboratories* (Centers for Disease Control 1999). These agents have been associated with human disease. These components have not been screened for hepatitis B, human immunodeficiency viruses, or other adventitious agents. Handle Bio-Plex[®] phosphoprotein positive and negative controls as potentially biohazardous material under at least Biosafety Level 2 containment.

Legal Notices

Acrodisc and Supor are trademarks of Pall Corporation. FLEXMAP, MagPlex, xMAP, and xPONENT are trademarks of Luminex Corporation. Barnstead and Lab-Line are trademarks of Thermo Fisher Scientific. Sonifier is a trademark of Branson Ultrasonics Corporation.

The Bio-Plex[®] suspension array system includes fluorescently labeled microspheres and instrumentation licensed to Bio-Rad Laboratories, Inc. by the Luminex Corporation.

CST antibodies developed and validated for Bio-Plex cell signaling, phosphoprotein, and total target assays.

Ordering Information

Detailed ordering information can be found at www.bio-rad.com/bio-plex.

Catalog #	Description	
Individual Comp	oonents and Accessories	
Various	Bio-Plex Pro [™] cell signaling singleplex sets, 1 x 96-well	
171-304006M	Bio-Plex Pro cell signaling reagent kit, 1 x 96-well	
Various	Bio-Rad cell lysate controls, pkg of 1 vial	
171-304515	Bio-Plex Pro cell signaling wash buffer, for 1 x 96-well assay, 330 ml	
171-304502	Filter plate, 1 x 96-well with clear plastic lid and tray	
Bio-Plex [®] x-Plex [™] Assays (We Mix)		

Create a premium custom assay using the online Bio-Plex Assay Builder.

Go to **www.bio-rad.com/bio-plex/assaybuilder** to select analytes of interest. Assays are supplied as premixed coupled beads and detection antibodies in the all-in-one kit format. Bio-Rad cell lysate controls are included.

Bio-Rad Laboratories, Inc.

Web site www.bio-rad.com USA 800 424 6723 Australia 61 2 9914 2800 Life Science Austria 01 877 89 01 Belgium 09 385 55 11 Brazil 55 11 5044 5699 Group Canada 905 364 3435 China 86 21 6169 8500 Czech Republic 420 241 430 532 Denmark 44 52 10 00 Finland 09 804 22 00 France 01 47 95 69 65 Germany 089 31 884 0 Greece 30 210 9532 220 Hong Kong 852 2789 3300 Hungary 36 1 459 6100 India 91 124 4029300 Israel 03 963 6050 Italy 39 02 216091 Japan 03 6361 7000 Korea 82 2 3473 4460 Mexico 52 555 488 7670 The Netherlands 0318 540666 New Zealand 64 9 415 2280 Norway 23 38 41 30 Poland 48 22 331 99 99 Portugal 351 21 472 7700 Russia 7 495 721 14 04 Singapore 65 6415 3188 South Africa 27 861 246 723 Spain 34 91 590 5200 Sweden 08 555 12700 Switzerland 026 674 55 05 Taiwan 886 2 2578 7189 Thailand 800 88 22 88 United Kingdom 020 8328 2000