High-precision Copy Number Variation (CNV) measurement achieved on Droplet Digital PCR with a high multiplexing approach Richard Dannebaum, Nyaradzo Dzvova, Raymond-John Abayan, Maria Gencoglu, Olga Mikhaylichenko, Anthony Henriquez, Severine Margeridon, Monica Herrera

Bio-Rad Laboratories, Inc. – Clinical Diagnostics Group (Pleasanton, CA)

using 5ng of input per well. On average, 85% of sample input is captured into droplets. Using a 120-plex, 64% of total droplets are expected to fluoresce in

- model confidence intervals, capturing the upper and lower limits expected between
- Power Analysis for CNV limit of detection in ddpcr. Utilizing 3 replicate wells with 5ng of DNA input and combining all 6 channels together, it is possible to achieve a 95% LOD for CNV detection

Conclusions

- controls.
- is ongoing.

References

1) Dube S, Qin J, Ramakrishnan R (2008) Mathematical Analysis of Copy Number Variation in a DNA Sample Using Digital PCR on a Nanofluidic Device. PLoS ONE 3(8): e2876. doi:10.1371/journal.pone.0002876

III-SIIICO MOUEI CUITUIALIVE PERIOFITIATICE							
CNV cut-off	ТР	TN	FP	FN	sensitivity	specificity	
>= 4%	5832	5861	35	35	99.40%	99.41%	
>= 6%	4766	4797	5	9	99.81%	99.90%	
>= 8%	3668	3707	2	3	99.92%	99.95%	

with at least 4% CNV, and > 99.9% for samples with at least 8% CNV

Seventy-eight universal digital PCR probe combinations were analyzed, (13 universal probes combined with 6 dyes). Out of these probes, 6 were selected as best performers based on probe-probe interactions, ddPCR fluorescence amplitude, lack of ddPCR positivity in no template controls, and ddPCR concentration accuracy.

Using these universal probes, 120 PCR assays were combined in a single reaction achieving precise measurements of wild-type copies and low positivity in no template

Using an in-silico model, we demonstrate the potential for digital PCR applications to detect CNV in sample mixtures as low as 4% with greater than 95% sensitivity. initial data sets with contrived and clinical samples support this modeling. additional testing

