Molecular Weight Estimation

Run the standards and samples on an SDS-PAGE gel. Process the gel with the desired stain and then destain to visualize the protein bands. Determine the R_i graphically or using Quantity One® analysis software (or equivalent).

1. Using a ruler, measure the migration distance from the top of the resolving gel to each standard band and to the dye front.

2. For each band in the standards, calculate the R_i value using the following equation:
 \[R_i = \frac{\text{migration distance of the protein}}{\text{migration distance of the dye front}} \]

3. Repeat this step for the unknown bands in the samples.

4. Use a graphing program, plot the log (MW) as a function of R_i.

5. Generate the equation \(y = mx + b \), and solve for \(y \) to determine the MW of the unknown protein.

Fig. 1. Example showing MW determination of an unknown protein.
Lane 1, 10 μl of Precision Plus Protein™ unstained standards; lanes 2–8, a dilution series of an *E. coli* lysate containing a hypothetical unknown protein (GFP). Proteins were separated by SDS-PAGE in a Criterion™ 4–20% Tris-HCl gel and stained with Bio-Safe™ Coomassie stain. Gel shown is the actual size.

\[
\begin{align*}
y &= -1.9944x + 2.7824 \\
r^2 &= 0.997
\end{align*}
\]

Fig. 2. Determining the MW of an unknown protein by SDS-PAGE.
A standard curve of the log (MW) versus R_i was generated using the Precision Plus Protein standards from Figure 1. The strong linear relationship (\(r^2 > 0.99 \)) between the proteins’ MW and migration distances demonstrates exceptional reliability in predicting MW.
This is an excerpt from Bio-Rad's comprehensive Electrophoresis Guide (Bulletin 6040).