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Introduction
Biologists perform immunoassays to determine the 
concentration of an analyte in a sample. In Bio-Plex assays, 
this is typically done by measuring a response in the form of 
a signal that is proportional to the amount of analyte bound to 
the antibody on beads that have been incubated with  
the sample.

In order to quantitate the concentration of the analyte, the 
response must be compared to a calibration curve commonly 
called the standard curve. The unknown concentration of an 
analyte may then be determined by finding the concentration 
on the standard curve that produces the same response  
as that obtained from the unknown sample (Wild 1994,  
Dudley et al. 1985). 

Ideally, the standard curve would be the true curve: the curve 
that expresses the concentration vs. response relationship 
without any distortion by errors. If an infinite number of 
concentrations were used, each with an infinite number of 
replicates, the resulting curve would be the true curve. Since, 
for practical reasons, only a limited number of samples can be 
run in an assay, the true curve must be estimated from a  
limited number of noisy responses. 

From these noisy responses, the true response at each 
concentration must be estimated. Because there cannot be a  
standard at every concentration, a means of interpolating 
between standards is necessary. This is done by selecting a 
mathematical function that does a good job of approximating 
the true curve. This approximating function is called a curve 
model. Many functions have been employed as curve models 
of immunoassays, including lines, cubic splines, logistic 
functions, and lines in logit-log space. 
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Curve Fitting
Two steps must be taken to find a function that gives a good 
approximation of the true curve. First, the mathematical curve 
model must be selected. Then, the particular curve out of the 
entire family of possible curves that best explains the data 
must be determined by fitting the curve. This means that the 
parameters in the function must be adjusted until the function 
approximates the assay’s true curve as well as possible. 

In statistics, one of the most common ways to determine how 
well a candidate standard curve is fitting the true curve is to 
determine how likely (probable) it is for the candidate standard 
curve to have yielded the observed standard data under the 
assumption that the candidate standard curve is actually the 
true curve. The best-fitting curve is therefore the curve most 
likely to have given rise to the observed data. This curve is 
often called the maximum likelihood estimate of the true curve.

Statistical regression theory shows that finding the parameters 
of the maximum likelihood curve is equivalent to finding the 
curve whose parameters generate the smallest weighted sum 
of squared errors (wSSE) (Draper and Smith 1981, Bates and 
Watts 1988). The weighted sum of squared errors is the sum  
of all of the squares of the differences (D2) between the 
observed standard responses (yi) and the response predicted 
by the curve model (ŷi), weighted by the inverse variance  
(1/variance) of the standard responses at that concentration. 

Regression, or fitting, is the process of minimizing the weighted 
sum of squared errors (wSSE). Therefore, the best-fitting curve 
is the one whose parameters produce the smallest wSSE.  
Note that the differences (D) are being called errors here, but 
the word “residuals” is often used, and wSSE could just as well 
be called the weighted sum of squared residuals.
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Figure 1 diagrams the computation of wSSE, showing the 
errors and weights that factor into the computation.

Weighting

Choosing proper weights for the squared residuals is crucial  
for obtaining the best curve fit. According to regression theory, 
the weights should be set equal to the inverse variance of 
the responses at that concentration. This keeps the fitting 
procedure tighter around those standard responses with the 
smallest variance (error), that is, those with smallest responses, 
and looser around those standard responses with the largest 
variance, that is, those with largest responses. This yields the  
optimal use of information from the noisier and less noisy 
standards, and leads to the most accurate concentration 
estimates. Sample concentrations computed from unweighted 
curve-fitting procedures can differ from properly weighted 
curves by hundreds of percent.

The variance of a standard is a function of the magnitude of its 
response. It is common for the variance of a standard at the 
high-response end of a curve to be 3 or 4 orders of magnitude 
larger than those at the low-response end of the curve. There 
are two reasons for this response dependence. First, most 
signal detectors produce noise with a standard deviation that  
is proportional to the magnitude of the response. Second,  
the kinetics associated with antibody binding are nonlinear 
(Wild 1994), with the result that the kinetic variations in the 
reaction change with the magnitude of the response.  
The variance of the standards can usually be approximated  
by a power function of the response:

variance = A(response)B

where A is a function of the magnitudes of the responses and 
B falls in the range 1.0–2.0 for most immunoassays (Finney 
1978). Data such as immunoassay responses in which the 
variances are not constant are called heteroscedastic data.

Since it is impractical to run enough replicates to reliably 
estimate the true variance function from a single assay, a pool 
of historical assay data can be used to compute this variance 
function (Finney and Phillips 1977, Raab 1981).

Residual Variance vs. r2

Once the curve model has been fitted by adjusting its 
parameters to minimize wSSE, a means of assessing the 
quality of the curve fit is necessary because a poor curve fit  
will generate unreliable concentration estimates. 

Perhaps the first quantity one might consider using as a fit 
metric is wSSE, since this is precisely what is being minimized 
by the curve-fitting algorithm to find the best fit. For any given 
set of standard data, a curve fit with a smaller wSSE is better 
than one with a larger wSSE.

The problem with using wSSE is that it cannot be compared 
directly with the wSSE of other assays if the number of data 
points is not the same. A quantity that is based on wSSE but  
that can be compared across assays that have differing 
amounts of data is called the residual variance. The residual 
variance is the wSSE divided by the number of degrees of 
freedom in the assay. The number of degrees of freedom in  
an assay is the number of data points in the standard curve 
beyond the number of parameters in the curve model. For 
example, a line has two parameters, and so requires two data 
points to uniquely determine it. If a line were being fitted to 
eight standard points, there would be 8 – 2 = 6 degrees of 
freedom. A five-parameter logistic (5PL) has five parameters 
and requires five data points to uniquely determine it. If a 5PL 
were being fitted to eight standard points, there would be  
8 – 5 = 3 degrees of freedom. The residual variance normalizes 
the wSSE to properly account for differences in the number of  
data points.

The statistic r2 is another measurement that is commonly 
used as a fit metric, especially for linear regression. Residual 
variance and r2 are related, but they behave quite differently. 
If the squares of each of the mean-corrected responses are 
weighted and summed together, this total sum of squares  
(total SS) can be divided into two parts: the regression sum of  
squares (regression SS) is that portion of the total SS that is 
explained by the regression model, and the residual sum of 
squares (SSE) is that portion of the total SS that is left over.  
The value of r2 is the fraction regression SS/total SS. 

The problem with r2 is that it is not a sensitive metric for 
assessing the quality of a curve fit. Even with bad curve fits, 
the vast majority of the total SS will be accounted for in the 
regression SS fraction. This leads to r2 values above 0.95  
even for a bad fit. Further, because it is not weighted, the 
majority of r2 will have been contributed by the standards  
with the highest responses. The residual variance, on the other 
hand, is very sensitive to imperfections in the curve fit, when 
properly weighted.

Fit Probability

Residual variance allows the quality of fit to be measured. 
However, it provides no information about how good or bad a  
fit is. Under the assumption that the responses of the individual  
standard concentrations are approximately normally 
distributed, it can be shown that wSSE obeys a chi-square 
distribution with the number of degrees of freedom present in  
the assay (Draper and Smith 1981, Bates and Watts 1988). 
This distribution allows us to determine how likely it is that a 

Fig. 1. Graphical rendition of the computation of wSSE. Shown are the
residuals, how the weights are applied to them, and the summation of the
weighted squared residuals to obtain wSSE. The direction and length of the line  
from the curve to the data point indicate the sign and magnitude of the residual.  
This residual is then squared, multiplied by a weighting factor, and summed to 
give wSSE.
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better and will provide more accurate concentration estimates 
than the 4PL fit. Table 1 shows the fit statistics for the two 
curve fits in Figure 2: wSSE, degrees of freedom, residual 
variance, and fit probability. The fit probabilities in Table 1  
show that the quality of the 5PL fit is good, while the fit of  
the 4PL is very poor.

The 5PL and 4PL models are described by the following 
equation:

In this equation, x is the concentration, y is the response,  
and a, b, c, d, and g are the five parameters of the 5PL  
model. The 4PL model is obtained by setting g = 1.

particular value of wSSE will occur. The chi-square probability 
is the fraction of assays, if performed under exactly the same 
conditions, that would be expected to have a worse curve fit, 
that is, a larger wSSE, than the curve fit of the assay under 
consideration. This probability obtained from the chi-square 
distribution is called the fit probability. Being a probability, the 
values of the fit probability range from 1 (perfect fit) to 0 (no fit).

The Advantages of a Good Fit

The goal of an assay designed to determine the concentration 
of an analyte in a sample is to be as accurate as possible. 
Improving the standard curve fit will improve the accuracy of  
all concentration estimates. In turn, improving the accuracy  
of the concentration estimates will extend the dynamic range  
of the assay. The dynamic, or reportable, range of an assay 
is the range over which the errors of the concentration 
estimates stay below the maximum acceptable error. Typically, 
a good fit will cause the dynamic range to be extended at 
the low concentration end of the assay, permitting lower 
concentrations to be accurately determined. 

To improve the quality of the fit of the standard curve, the 
sources of fit error must be identified. In any regression, 
regardless of what curve model is used, there are two reasons 
that the curve will not fit the data perfectly. The first reason is  
the presence of random variation in the data. This kind of error 
is called pure error and can be reduced by increasing the 
number of replicates of each standard. The second reason is  
that the curve model may not approximate the true curve very 
well. This kind of error is called lack-of-fit error and cannot be  
reduced by increasing the number of standard replicates.  
For example, much immunoassay data has a sigmoidal,  
or “S”, shape if data are taken over a wide enough range of 
concentrations. If a line were used as the curve model to fit 
such data, much of the wSSE would be due to lack-of-fit error. 
This is because a straight line simply cannot fit the sigmoidal 
shape of the data. In other words, the shape of the assay’s  
true curve is not a straight line.

To fit the data as well as possible, a curve model must be 
chosen that does a good job of approximating the true curve. 
If this is not done, no amount of improving the assay process 
by reducing random noise will improve the fit beyond the limit 
allowed by the lack-of-fit component of the error.

The Four- and Five-Parameter Logistic Curve Models
The four-parameter logistic (4PL) model has historically 
been more successful at fitting immunoassay data than its 
predecessors, particularly the logit-log and mass action 
models. However, the 4PL model has a weakness: It is a 
symmetrical function, and most immunoassay data are not 
symmetrical. To rectify this shortcoming, the 4PL model was 
extended by adding a fifth parameter that controls the degree 
of asymmetry of the curve (Prentice 1976, Rodbard et al. 
1978). With the extra flexibility afforded by its g parameter, 
the 5PL model is able to eliminate this lack-of-fit error from 
immunoassay curves. Figure 2 shows the result of fitting the 
same set of asymmetric data with a 5PL curve model and a 
4PL curve model. It is apparent that the 5PL curve fits the data 

particular value of wSSE will occur. The chi-square probability
is the fraction of assays, if performed under exactly the same
conditions, that would be expected to have a worse curve fit,
that is, a larger wSSE, than the curve fit of the assay under
consideration. This probability obtained from the chi-square
distribution is called the fit probability. Being a probability, the
values of the fit probability range from 1 (perfect fit) to 0 (no fit). 

The Advantages of a Good Fit

The goal of an assay designed to determine the concentration
of an analyte in a sample is to be as accurate as possible.
Improving the standard curve fit will improve the accuracy of all
concentration estimates. In turn, improving the accuracy of the
concentration estimates will extend the dynamic range of the
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range over which the errors of the concentration estimates stay
below the maximum acceptable error. Typically, a good fit will
cause the dynamic range to be extended at the low
concentration end of the assay, permitting lower
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To improve the quality of the fit of the standard curve, the
sources of fit error must be identified. In any regression,
regardless of what curve model is used, there are two reasons
that the curve will not fit the data perfectly. The first reason is
the presence of random variation in the data. This kind of error
is called pure error and can be reduced by increasing the
number of replicates of each standard. The second reason is
that the curve model may not approximate the true curve very
well. This kind of error is called lack-of-fit error and cannot be
reduced by increasing the number of standard replicates. For
example, much immunoassay data has a sigmoidal, or “S”,
shape if data are taken over a wide enough range of
concentrations. If a line were used as the curve model to fit
such data, much of the wSSE would be due to lack-of-fit error.
This is because a straight line simply cannot fit the sigmoidal
shape of the data. In other words, the shape of the assay’s
true curve is not a straight line.

To fit the data as well as possible, a curve model must be
chosen that does a good job of approximating the true curve.
If this is not done, no amount of improving the assay process
by reducing random noise will improve the fit beyond the limit
allowed by the lack-of-fit component of the error.

The Four- and Five-Parameter Logistic Curve Models
The four-parameter logistic (4PL) model has historically 
been more successful at fitting immunoassay data than its
predecessors, particularly the logit-log and mass action
models. However, the 4PL model has a weakness: It is a
symmetrical function, and most immunoassay data are not
symmetrical. To rectify this shortcoming, the 4PL model was
extended by adding a fifth parameter that controls the degree
of asymmetry of the curve (Prentice 1976, Rodbard et al.
1978). With the extra flexibility afforded by its g parameter, 
the 5PL model is able to eliminate this lack-of-fit error from
immunoassay curves. Figure 2 shows the result of fitting the
same set of asymmetric data with a 5PL curve model and a
4PL curve model. It is apparent that the 5PL curve fits the data

better and will provide more accurate concentration estimates
than the 4PL fit. Table 1 shows the fit statistics for the two
curve fits in Figure 2: wSSE, degrees of freedom, residual
variance, and fit probability. The fit probabilities in Table 1 
show that the quality of the 5PL fit is good, while the fit of 
the 4PL is very poor.

The 5PL and 4PL models are described by the 
following equation:

In this equation, x is the concentration, y is the response, 
and a, b, c, d, and g are the five parameters of the 5PL 
model. The 4PL model is obtained by setting g = 1.

Fig. 2. Comparison of 5PL and 4PL curve fitting. A, the result of a 5PL 
fit on asymmetric immunoassay data; B, the result of a 4PL fit on the 
same data.
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Table 1. Fit statistics for the 5PL and 4PL fits shown in Figure 2.

Statistic 5PL 4PL 

wSSE 2.41 120.0

Degrees of freedom 9 10

Residual variance 0.269 12.0

Fit probability 0.983 <0.001

Where: 

a = estimated response at 
zero concentration

b = slope factor

c = mid-range concentration

d = estimated response at 
infinite concentration

g = asymmetry factor

[     ]( )
y = d +

a – d
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x
c
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Fig. 2. Comparison of 5PL and 4PL curve fitting. A, the result of a 5PL  
fit on asymmetric immunoassay data; B, the result of a 4PL fit on the  
same data.

particular value of wSSE will occur. The chi-square probability
is the fraction of assays, if performed under exactly the same
conditions, that would be expected to have a worse curve fit,
that is, a larger wSSE, than the curve fit of the assay under
consideration. This probability obtained from the chi-square
distribution is called the fit probability. Being a probability, the
values of the fit probability range from 1 (perfect fit) to 0 (no fit). 
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been more successful at fitting immunoassay data than its
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1978). With the extra flexibility afforded by its g parameter, 
the 5PL model is able to eliminate this lack-of-fit error from
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than the 4PL fit. Table 1 shows the fit statistics for the two
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variance, and fit probability. The fit probabilities in Table 1 
show that the quality of the 5PL fit is good, while the fit of 
the 4PL is very poor.

The 5PL and 4PL models are described by the 
following equation:

In this equation, x is the concentration, y is the response, 
and a, b, c, d, and g are the five parameters of the 5PL 
model. The 4PL model is obtained by setting g = 1.

Fig. 2. Comparison of 5PL and 4PL curve fitting. A, the result of a 5PL 
fit on asymmetric immunoassay data; B, the result of a 4PL fit on the 
same data.
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All curves generated by the 5PL equation are either 
monotonically increasing or decreasing, depending on the 
choice of parameters a, b, and d. Table 2 summarizes the 
effect of the parameters a, b, and d on the slope of the  
logistic function.

Figure 3 shows semi-log plots of a family of curves that can 
be generated from the 5PL equation. The figure makes several 
characteristics of the 5PL function apparent. The function 
approaches a horizontal asymptote as the dose approaches 
zero, and it approaches another horizontal asymptote as the 
dose approaches infinity. Between the asymptotic regions of 
the curve is a transition region. There is a single inflection point 
in the transition region. On either side of the inflection point,  
the curve will approach the left and right asymptotes at 
different rates unless g = 1. 

Each parameter of the 5PL function has a different effect on 
the curve. Table 3 summarizes the effect of each parameter  
on the 5PL function. R
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Fig. 3. Effects of varying the parameters of a 5PL function. Panels A–E,
effects of varying the parameters a, b, c, d, and g, respectively. In this example, 
a > d and b < 0.

Table 3. Geometric interpretation of the 5PL function’s parameters.
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Parameter Effect on Curve

a Controls the position of the asymptote. Order relative 
to d controls sign of slope. Along with b, magnitude 
relative to d controls magnitude of slope.

b Magnitude controls the rapidity of the transition region; 
sign controls sign of the slope of the curve. Solely controls
the rate of approach to the asymptote, and jointly with g
controls the approach to the asymptote.

c Controls the position of the transition region.

d Controls the position of the asymptote. Order relative to 
a controls the sign of the slope of the curve. Along with b,
magnitude relative to a controls magnitude of slope of 
the curve.

g Jointly with b controls the rate of approach to 
the asymptote.

Table 2. The relationship between the order of a and d, the sign of b,
and the slope of the monotonic 5PL function.

Case # Order of a and d Sign of b Slope

1 a > d b > 0 Down

2 a > d b < 0 Up

3 a < d b > 0 Up

4 a < d b < 0 Down

Note that when g = 1 and the curve is actually a 4PL curve, pairs of cases
can be combined into single cases, so that for 4PL, case #1 and case #2, 
or case #1 and case #3, generate the same functional forms. For the 5PL
function, all cases produce distinct functional forms.

All curves generated by the 5PL equation are either
monotonically increasing or decreasing, depending on the
choice of parameters a, b, and d. Table 2 summarizes the
effect of the parameters a, b, and d on the slope of the 
logistic function.

Figure 3 shows semi-log plots of a family of curves that can 
be generated from the 5PL equation. The figure makes several
characteristics of the 5PL function apparent. The function
approaches a horizontal asymptote as the dose approaches
zero, and it approaches another horizontal asymptote as the
dose approaches infinity. Between the asymptotic regions of
the curve is a transition region. There is a single inflection point
in the transition region. On either side of the inflection point, 
the curve will approach the left and right asymptotes at 
different rates unless g = 1. 

Each parameter of the 5PL function has a different effect on
the curve. Table 3 summarizes the effect of each parameter 
on the 5PL function.

Note that when g = 1 and the curve is actually a 4PL curve, pairs of cases  
can be combined into single cases, so that for 4PL, case #1 and case #2,  
or case #1 and case #3, generate the same functional forms. For the 5PL  
function, all cases produce distinct functional forms.

Table 2. The relationship between the order of a and d, the sign of b,  
and the slope of the monotonic 5PL function.
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and the slope of the monotonic 5PL function.
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2 a > d b < 0 Up

3 a < d b > 0 Up

4 a < d b < 0 Down

Note that when g = 1 and the curve is actually a 4PL curve, pairs of cases
can be combined into single cases, so that for 4PL, case #1 and case #2, 
or case #1 and case #3, generate the same functional forms. For the 5PL
function, all cases produce distinct functional forms.

All curves generated by the 5PL equation are either
monotonically increasing or decreasing, depending on the
choice of parameters a, b, and d. Table 2 summarizes the
effect of the parameters a, b, and d on the slope of the 
logistic function.

Figure 3 shows semi-log plots of a family of curves that can 
be generated from the 5PL equation. The figure makes several
characteristics of the 5PL function apparent. The function
approaches a horizontal asymptote as the dose approaches
zero, and it approaches another horizontal asymptote as the
dose approaches infinity. Between the asymptotic regions of
the curve is a transition region. There is a single inflection point
in the transition region. On either side of the inflection point, 
the curve will approach the left and right asymptotes at 
different rates unless g = 1. 

Each parameter of the 5PL function has a different effect on
the curve. Table 3 summarizes the effect of each parameter 
on the 5PL function.

Table 3. Geometric interpretation of the 5PL function’s parameters.

Fig. 3. Effects of varying the parameters of a 5PL function. Panels A–E, 
effects of varying the parameters a, b, c, d, and g, respectively. In this example, 
a > d and b < 0.
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Fitting With the Five-Parameter Logistic Model
Asymmetric Curve Fitting

To handle data that were too asymmetric for the 4PL, many 
researchers were forced to use methods such as spline 
interpolations. The spline interpolation method does not 
attempt to find a minimum parameter model that approximates 
the true curve. Instead, the spline interpolation method puts a 
cubic spline through the data points using a parametric cubic 
function. Since a spline passes exactly through each data 
point, the number of parameters in a spline curve is always 
equal to the number of data points. The result is that there are 
always zero degrees of freedom in a spline fit. This means that 
a spline fit performs no averaging of the data to reduce  
random variation. Furthermore, a spline is not a good 
interpolating function for immunoassay data, because it often 
does not approximate the curve between the data points well.  
Splines are not always monotonic, and can oscillate up and 
down because of the random variation in every data point. 
Spline-based standard curves have substantial curve error 
because none of the random variation in the data points is 
averaged out, and therefore the concentration estimates 
contain a greater amount of error than a curve model with 
fewer parameters that can average out the random variation. 

Another method sometimes used in lieu of a 5PL is the log  
4PL method. This method takes advantage of the fact that 
taking the logarithm of the response of some asymmetric 
curves can make the data more symmetrical, and therefore 
better suited to a 4PL fit. This approach works when the  
low-response end of a sigmoidal curve has a shorter “tail” 
(approaches the asymptote faster) than the upper end of the 
curve (parameter g between 1.1 and 1.5). However, taking the  
log of the sigmoidal data when the low-response end of the 
curve has a longer tail than the high-response end makes the  
data more asymmetric. Since this type of behavior is 
encountered in immunoassay data more often than the former,  
this approach is not satisfactory for routine data reduction. 
Even when g fits into this optimal range, a 5PL model will  
almost always result in a better fit and more accurate 
concentration estimates.

When the 5PL model was first proposed as the means to 
obtain good fits to asymmetric assay data, many researchers 
recognized its potential and attempted to integrate the 5PL 
into their assay analyses. They found that fitting a 5PL model 
to assay data is much more difficult than fitting the 4PL model. 
The traditional numerical-fitting algorithms used for the 4PL 
failed at an unacceptably high rate; that is, they either returned 
an error or never finished. Worse still, in many of the assays for  
which the algorithm returned a fit, the fit was clearly not the 
best fit.

Why the 5PL Model Is Difficult to Fit

One reason that the 5PL model is so difficult to fit is that it is 
possible to wildly adjust its parameters in tandem so that the 
5PL curve itself hardly changes in the places where the data 
are. When one can change the parameters of the curve so that  
the curve hardly changes relative to the data points, then the 
residuals also will hardly change. This results in the value of 

wSSE being largely unaffected by these tandem parameter 
changes. Figure 4 shows an example of a 5PL curve where 
changing the values of the c and g parameters of the 5PL 
substantially has little effect on the curve and therefore on the 
value of wSSE. This can be seen by the wide, flat valley in the 
plot where an algorithm could easily be fooled into stopping 
early. Also, the flat plain on the far left near the g = 0 axis could 
fool an algorithm into stopping with a much worse value of 
wSSE than in the valley. The values of c and g that minimize the 
value of wSSE in this example are c = 16,748 and g = 2,899.

To facilitate the interpretation of this geometric view, imagine 
that wSSE is the result of fitting a two-parameter curve model  
instead of the 5PL curve model. A region in the parameter 
space where wSSE hardly changes even across wide changes  
in the parameter values would be like a wide flat plain. A plot of  
wSSE can also have “ravines” with steep sides but very level 
bottoms. Unlike a person standing on a landscape scanning 
the scene for a low spot, a fitting algorithm has only local 
information about wSSE and the history of where it has been 
to guide its next guess for the location of the minimum of 
wSSE. It has no way to “see” where to go. 

The point in the parameter space that minimizes wSSE 
provides the parameters of the best-fitting curve. Such a point  
is at the bottom of a valley on the wSSE surface. If a wide plain  
surrounds such a valley, an algorithm that does not use 
advanced methods can be fooled into thinking that the plain  
is actually the floor of the best-fitting valley, causing it to stop  
well short of the true minimum. Also, on such a plain, second 
derivative-based methods such as Gauss-Newton and 
Levenberg-Marquardt, the fitting methods most commonly 
used to fit 4PL curves, can be fooled into going in an entirely 
wrong direction because the matrix of second derivatives is 
very nearly singular. Such algorithms may hop around the 
parameter space forever, or stop and report an error after their  
iteration limits are reached. Also, the near singularity of the 
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recognized its potential and attempted to integrate the 5PL
into their assay analyses. They found that fitting a 5PL model
to assay data is much more difficult than fitting the 4PL model.
The traditional numerical-fitting algorithms used for the 4PL
failed at an unacceptably high rate; that is, they either returned
an error or never finished. Worse still, in many of the assays for
which the algorithm returned a fit, the fit was clearly not the
best fit. 

Why the 5PL Model Is Difficult to Fit

One reason that the 5PL model is so difficult to fit is that it is
possible to wildly adjust its parameters in tandem so that the
5PL curve itself hardly changes in the places where the data
are. When one can change the parameters of the curve so that
the curve hardly changes relative to the data points, then the
residuals also will hardly change. This results in the value of
wSSE being largely unaffected by these tandem parameter

changes. Figure 4 shows an example of a 5PL curve where
changing the values of the c and g parameters of the 5PL
substantially has little effect on the curve and therefore on the
value of wSSE. This can be seen by the wide, flat valley in the
plot where an algorithm could easily be fooled into stopping
early. Also, the flat plain on the far left near the g = 0 axis could
fool an algorithm into stopping with a much worse value of
wSSE than in the valley. The values of c and g that minimize
the value of wSSE in this example are c = 16,748 and 
g = 2,899.

To facilitate the interpretation of this geometric view, imagine
that wSSE is the result of fitting a two-parameter curve model
instead of the 5PL curve model. A region in the parameter
space where wSSE hardly changes even across wide changes
in the parameter values would be like a wide flat plain. A plot of
wSSE can also have “ravines” with steep sides but very level
bottoms. Unlike a person standing on a landscape scanning
the scene for a low spot, a fitting algorithm has only local
information about wSSE and the history of where it has been
to guide its next guess for the location of the minimum of
wSSE. It has no way to “see” where to go.

The point in the parameter space that minimizes wSSE
provides the parameters of the best-fitting curve. Such a point
is at the bottom of a valley on the wSSE surface. If a wide plain
surrounds such a valley, an algorithm that does not use
advanced methods can be fooled into thinking that the plain 
is actually the floor of the best-fitting valley, causing it to stop
well short of the true minimum. Also, on such a plain, second-
derivative-based methods such as Gauss-Newton and
Levenberg-Marquardt, the fitting methods most commonly
used to fit 4PL curves, can be fooled into going in an entirely
wrong direction because the matrix of second derivatives is
very nearly singular. Such algorithms may hop around the

Fig. 4. A plot of the wSSE surface of a 5PL curve fit against the parameters
c and g. The color of the plot corresponds to the slope of the surface. Blue hues
are low slope, or “flat”. The values c = 16,748 and g = 2,899 minimize wSSE.
This minimum falls in the middle of a flat plain that can fool algorithms into 
stopping early or going haywire, or can cause other problems. Note also the
plain on the far left near the g = 0 axis, where an algorithm could easily stop
without realizing that the valley where the true answer lies even exists.
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parameters c and g. The color of the plot corresponds to the slope of the 
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Note also the plain on the far left near the g = 0 axis, where an algorithm could 
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second-derivative matrix can cause many numerical problems  
since it must typically be inverted to be used in algorithms 
that employ it. This can cause an algorithm to have 
unpredictable problems.

Another problem that happens to algorithms on such flat plains 
in parameter space is that they can be going somewhere, 
probably not even in the right direction, very, very slowly. 
The result of this is that the algorithm may also never return 
because it never thinks it is “finished”.

Lastly, the wSSE surface is often not one big “bowl” such that 
all a fitting algorithm needs to do is “slide” down to the bottom. 
Almost any fitting algorithm can handle such a simple scenario. 
Real wSSE surfaces have many possible valleys, the bottoms 
of which may be the correct best minimum but more likely are  
not. A successful algorithm must be able to find the valley with 
the lowest bottom, and then successfully find the bottom.  
This requires that the algorithm be able to find a starting point 
for the fitting algorithm so that the starting point is within the  
region of convergence to the correct minimum of wSSE of the 
fitting algorithm being used. This is perhaps the most difficult 
task in developing a reliable algorithm for fitting the 5PL model. 
Many algorithms will end up in the wrong valley, and will report 
that they have found the best fit, even though they are  
nowhere near it.

The Brendan Logistic Module Fits the 5PL Better Than  
Other Software

A better 5PL fit means that concentration estimates will be 
more accurate. More accurate concentration estimates lead  
o wider dynamic ranges for assays. The Brendan logistic 
module, used in Bio-Plex Manager™ version 3.0 software, 
does a better job of fitting the 5PL than other data reduction 
software. The Brendan logistic module performs better 
because it:

n	� Uses optimal weighting with the 5PL curve model to  
correctly model the random error and thereby get the best 
possible fit

n	� Employs a number of sophisticated fitting algorithms that are 
able to traverse the “plains” and “level valleys” of the wSSE 
surface that can fool other algorithms

n	� Uses sophisticated logic to determine which algorithms are 
most effective to use during each phase of the fitting 

n	� Uses advanced methods to ensure that the true global 
minimum of wSSE is obtained, not a false local minimum
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n�	� Is numerically stable and robust due to careful selection  
of appropriate numerical algorithms, careful customization 
and optimization of them, and carefully designed logic for  
handling exceptions

Summary
Weighted 5PL regression produces the most accurate 
concentration estimates of any method currently in use for  
asymmetric immunoassay data. Because of difficulties with 
fitting the 5PL curve model, the 5PL model is only now 
becoming widely used in conjunction with software like the 
Bio-Plex system’s Brendan logistic module and StatLIA.  
Since no immunoassay data are perfectly symmetric, 
fitting with a 5PL model will almost always result in better 
concentration estimates than using a 4PL model. This in turn 
allows greater dynamic ranges to be used, and produces 
greater accuracy in the results. The Brendan logistic module  
is able to fit the 5PL model better than other software.
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