Increased Transfer Efficiency using a Discontinuous Buffer System with the Trans-Blot® SD Semi-Dry Electrophoretic Transfer Cell

By Anthony K. Tan, Ph.D., Bio-Rad Laboratories, Hercules, CA, USA

Introduction
Semi-dry transfer has traditionally been a fast but inefficient method for transferring all of the protein from a gel onto a membrane. By using a discontinuous buffer system, transfer efficiency can be greatly increased. In protein blotting, the buffer has an important effect on the elution of proteins from a gel and on the retention of proteins on the membrane.

A unique feature of semi-dry blotting is the ability to use two different buffers during transfer, which is termed a discontinuous buffer system. This is important because methanol and SDS, commonly used in transfer buffers, have opposite effects on binding of proteins to gel and membrane (see discussion below). Optimization of the transfer buffer composition can be accomplished using a discontinuous buffer system.

The Effects of Methanol
Methanol increases a protein’s affinity for a membrane by removing bound SDS from the protein. This increases the number of hydrophobic sites on the protein that are available to bind to the membrane support. It is for this reason that methanol is often used in transfer buffers. While advantageous for binding of proteins to the membrane, methanol causes the pores in the gel to constrict. This makes it mechanically more difficult for proteins to exit the gel.

The Effects of SDS
SDS is used in western blotting transfer buffer to aid in the elution of proteins from the gel matrix. While it inhibits the binding of proteins to the membrane, it is often necessary to facilitate complete transfer of proteins from the gel.

Using a Discontinuous Buffer System
The opposing effects of methanol and SDS in blotting can be exploited in semi-dry transfer because the buffer reservoirs (the filter paper on both sides of the gel) are independent. In a discontinuous system, methanol should be included in the buffer on the membrane side (anode) of the blot assembly and SDS included on the gel side (cathode), taking advantage of the beneficial effects of each component.

A discontinuous buffer system using Tris/CAPS buffers in the Trans-Blot SD semi-dry electrophoretic transfer cell provides excellent results in semi-dry blotting. This procedure uses Tris/CAPS buffer plus 15% methanol in the filter paper at the anode and Tris/CAPS plus 0.1% SDS in the filter paper at the cathode.

The effectiveness of the technique is illustrated in Figure 1. Cytosolic protein from white blood cells was separated by SDS-PAGE (Figure 1A); following transfer to a membrane (1B), the p47phox component of the respiratory burst oxidase was detected by western blotting using Immun-Star™ chemiluminescent substrate (1C).

For Best Results
Bio-Rad’s extra thick blotting paper should be used. This paper is 2.6 mm thick 100% cotton fiber, and provides the absorbency required for semi-dry blotting.

PVDF provides superior retention of protein. For proteins with molecular weight less than 20 kD, PVDF is required to prevent loss of proteins due to “blow-through” during electrophoretic transfer. Its higher binding capacity will increase detection sensitivity. It is important to first wet the PVDF in 100% methanol, then equilibrate in anode buffer for at least 30 min prior to transfer. It is expedient to begin equilibration during the vertical electrophoresis run.
TRIS/CAPS BUFFER FORMULATION
5x stock solution:
36.34 g Tris base
44.26 g CAPS
Water to 1 L
To prepare 100 ml of each working buffer from the 5x stock solution (final concentration 60 mM Tris, 40 mM CAPS, pH 9.6):
Anode (bottom) buffer: Cathode (top) buffer:
20 ml 5x Tris/CAPS 20 ml 5x Tris/CAPS
15 ml MeOH 1 ml 10% SDS
65 ml water 79 ml water

TRANSFER CELL ASSEMBLY
Following vertical electrophoresis:
1. Wet the PVDF membrane in 100% MeOH, then equilibrate in anode buffer for at least 30 min. To this buffer add one sheet of extra thick blotting paper.
2. Equilibrate the polyacrylamide gel in cathode buffer. Soak a second piece of extra thick blotting paper in this buffer.
3. Prepare for transfer by assembling the gel sandwich in the following order: Platinum (bottom) anode platform
 Extra thick filter paper previously soaked in anode buffer
 Equilibrated PVDF membrane
 Equilibrated gel
 Extra thick filter paper previously soaked in cathode buffer
4. Securely latch top stainless-steel cathode assembly, cover with safety lid, and run at constant current, 1.5 mA per square centimeter of gel (for example, 120 mA for a small 8 x 10 cm gel) for 30-60 min.

Bibliography
Tovey, E. R. and Baldo, B. A., Comparison of semi-dry and conventional tank-buffer electrotransfer of proteins from polyacrylamide gels to nitrocellulose membranes, Electrophoresis, 8, 384–387 (1987)

Ordering Information
Catalog # Description
Trans-Blot SD Cell and System
170-3940 Trans-Blot SD Semi-Dry Electrophoretic Transfer Cell
170-3948 Trans-Blot SD System, 100/120 V, includes PowerPac 200 power supply
170-3949 Trans-Blot SD System, 220/240 V
Immun-Star Kits
170-5010 Goat Anti-Mouse Detection Kit
170-5011 Goat Anti-Rabbit Detection Kit
170-5012 Substrate Pack
170-5018 Substrate Only
170-5013 Goat Anti-Mouse Intro Kit
170-5014 Goat Anti-Rabbit Intro Kit
170-5015 Blotting Reagents Pack
Blot Absorbent Filter Paper (Extra Thick)
170-3965 Extra Thick Blot Paper, 7.5 x 10 cm, 60
170-3968 Extra Thick Blot Paper, 10 x 15 cm, 30
170-3969 Extra Thick Blot Paper, 15 x 15 cm, 30
170-3960 Extra Thick Blot Paper, 15 x 20 cm, 30