Bio-Rad Laboratories, Inc.

.....

2000 Alfred Nobel Dr. Hercules, CA 94547 USA (510) 741-1000

1-800-424-6723

Aurum[™] Plasmid Mini Kit Instruction Manual

.....

For technical service, call your local Bio-Rad office, or in the US, call 1-800-4BIORAD (1-800-424-6723)

Table of Contents

Section 1	Introduction1
Section 2	Kit Components1
Section 3	Storage Conditions2
Section 4	Necessary Supplies
Section 5	Guidelines for Using the Aurum Plasmid Mini Kit4
Section 6	Protocol
Section 7	Troubleshooting Guide12
Section 8	Ordering Information15

Section 1 Introduction

The new Aurum plasmid mini kit is optimized for the purification of up to 20 µg of plasmid DNA, rapidly and inexpensively, without the use of toxic reagents or alcohol precipitations. The use of membranes to bind and purify plasmid DNA, in combination with an optimized column design, minimizes handling and allows plasmid purification to be carried out in either a vacuum or spin format. In either format, the final elution is carried out in a microcentrifuge. Plasmid DNA purified with the Aurum plasmid mini kit is eluted into a small volume of aqueous buffer and is free of salts, bacterial chromosomal DNA, and RNA. The exceptional purity of the plasmid produced by this system makes it ideal for use in automated fluorescent sequencing and in any other molecular biology application.

Section 2 Kit Components

The Aurum plasmid mini kit contains the following components:

resuspension solution	25 ml
lysis solution	25 ml
neutralization solution	40 ml
wash solution	25 ml (5x concentrate)
elution solution	16 ml
plasmid mini columns	100
2 ml capless wash tubes	100

The solutions are specifically formulated for the Aurum plasmid mini kit. They are NOT interchangeable with solutions used in other kits or protocols.

Section 3 Storage Conditions

Solutions and columns should be stored at room temperature. If precipitation is observed in any solution, warm solution to 37°C to redissolve, and allow to return to room temperature before use. Do not expose any of the solutions to temperatures above 37°C. If the kit is used infrequently, storage of the resuspension solution at 4°C is recommended to preserve the RNase.

Section 4 Necessary Supplies

Equipment and supplies to be provided by the customer:

- 1.5–2.0 ml capped microcentrifuge tubes 200
- 95–100% ethanol, or reagent-grade (denatured) ethanol 100 ml
- Microcentrifuge (≥12,000 x g)

Additional equipment required for vacuum format:

• Bio-Rad Aurum vacuum manifold with vacuum regulator and column adaptor plate (Cat. #732-6470), or other vacuum manifold with luer fittings (Figure 1).

Note: Please read Section 7, **Instrument Setup and Use for the Column Adaptor Plate** in the Aurum vacuum manifold instruction manual for proper vacuum setup conditions.

• Vacuum source (capability of -20 to -23" Hg required)

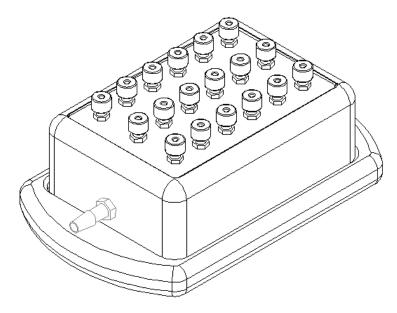
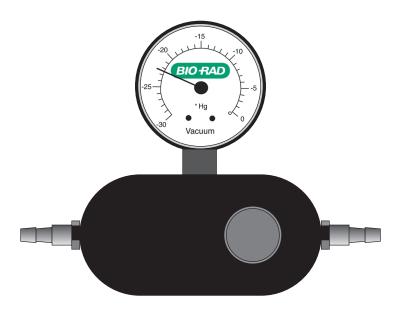


Fig. 1. Aurum vacuum manifold

Section 5 Guidelines for Using the Aurum Plasmid Mini Kit

Please read the following guidelines before starting the plasmid purification.

Bacterial Growth Guidelines:

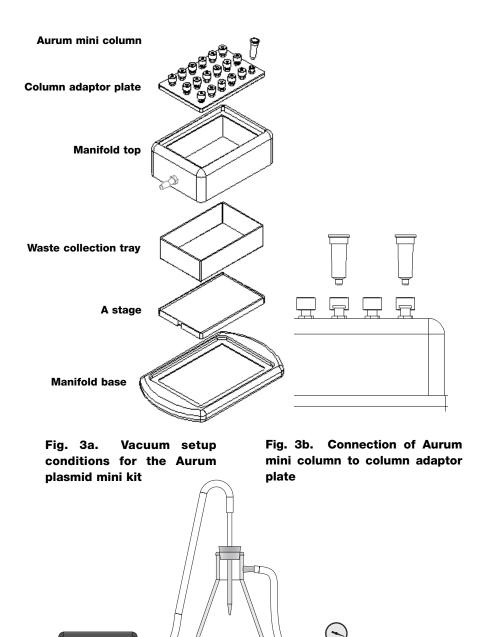

- The Aurum plasmid mini kit can process cultures grown in a variety of different broths, such as LB (Luria-Bertani broth), LBG (LB + 2% glycerol), SB (Super Broth) and 2x YT. For optimum performance, LB or LBG is recommended for most strains of *E. coli.* TB (Terrific Broth) cultures generally produce lower plasmid yields of more variable quality and are therefore not recommended.
- For optimum plasmid quality, plasmid propagation in an *endA*⁻ host, such as DH5 α , JM109, or XL1-Blue, is recommended.
- Spectrophotometric determination of culture density is a REQUIREMENT for optimum performance. Optimized concentrations of purified plasmid will generally result with most high copy number constructs, bacterial hosts and media when 10–12 OD•ml of bacteria are processed per column, although smaller amounts of culture may also be processed.

To determine the density of a bacterial culture (OD₆₀₀), combine 50 µl of bacterial culture with 950 µl growth medium (1:20 dilution). Use the growth medium as a blank and take the spectrophotometric reading at $\lambda = 600$ nm. Multiply this figure by 20 to calculate the bacterial concentration. Depending upon the OD₆₀₀ value, a specific volume of the culture will be selected to provide an optimum amount of bacteria for processing. To calculate the volume of bacterial culture required for plasmid purification, use the following equation:

 $(OD_{600} \text{ of undiluted culture})^* x (culture volume in ml) = #OD•ml$

For example, 12 OD•ml of bacteria would require 2 ml of an undiluted culture with an $OD_{600} = 6$.

• The protocol is designed to process up to 12 OD•ml of bacterial host.


Vacuum Guidelines:

• The recommended operating range is -20 to -23 inches of mercury (" Hg). Do not exceed -25" Hg when performing this protocol. A vacuum regulator is required to establish the appropriate vacuum pressure (Figure 2).

Table 1. Pressure unit conversions

To convert from inches of mercury (" Hg) to:	Multiply by:
millimeters of mercury or torr (mm Hg, torr)	25.4
millibar (mbar)	33.85
atmospheres (atm)	0.03342
pounds per square inch (psi)	0.4912
kilopascals (kPa)	3.385

 $^*\text{OD}_{600}$ is equivalent to approximately 8 x 10 $^{\!\!8}$ cells/ml

Vacuum Format

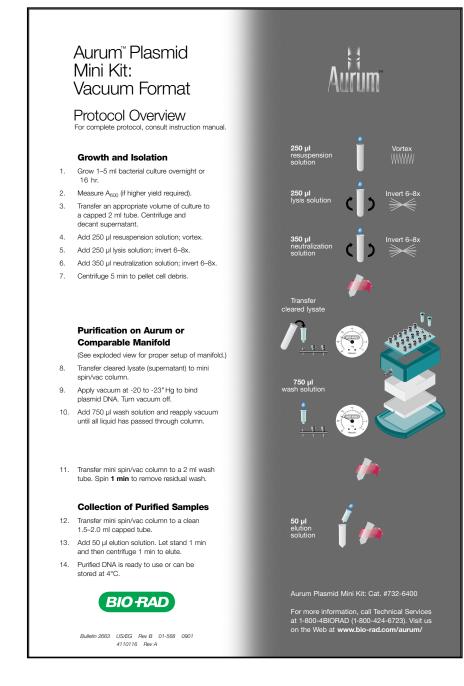
This procedure requires the Bio-Rad Aurum vacuum manifold and column adaptor plate (Cat. #732-6470), or any vacuum manifold with luer fittings. For proper vacuum setup conditions, please read **Instrument Setup and Use for the Column Adaptor Plate** in the vacuum manifold instruction manual, and see Fig. 4. All centrifugation steps are performed at maximum speed (≥12,000 x g) under ambient conditions, with any commercially available microcentrifuge which can accommodate 1.5 ml and 2.0 ml tubes. Please read the section "Guidelines for Using the Aurum Plasmid Mini Kit" before proceeding.

- 1. Transfer up to 12 OD•ml of plasmid-containing bacterial host to a 1.5–2.0 ml capped microcentrifuge tube (not provided). Pellet the cells by centrifugation for 1 min. Remove all supernatant by decanting or pipetting.
- 2. Add 250 µl of resuspension solution and vortex or pipet up and down until the cell pellet is completely resuspended.
- Add 250 µl of lysis solution and mix by inverting the capped tube briskly 6–8 times. DO NOT VORTEX OR SHAKE. The solution should become viscous and slightly clear.

Note: The neutralization solution should be added within 5 min after lysis.

- Add 350 µl of neutralization solution and mix by inverting the capped tube briskly 6–8 times. DO NOT VORTEX OR SHAKE. A visible precipitate should form.
- 5. Centrifuge the neutralized lysate for 5 min. A compact white debris pellet will form along the side or at the bottom of the tube.
- 6. While centrifuging the lysate, attach a plasmid mini column to the luer fitting of the column adaptor plate on the Aurum vacuum manifold or to a compatible vacuum manifold. The vacuum source should be turned off, and the vacuum regulator should be completely open.
- 7. By decanting or pipetting, transfer the cleared lysate from step 5 to the plasmid mini column. Turn the vacuum on and adjust to -20 to -23" Hg by closing the vacuum regulator. Continue to apply vacuum until all of the lysate has passed through the column. Open the vacuum regulator until the gauge indicates 0" Hg.
- 8. The wash solution is supplied as a 5x concentrate. Add 4 volumes (100 ml) of 95–100% ethanol or reagent-grade (denatured) ethanol before initial use.

Fig. 4. Vacuum setup conditions


Vaccum regulator Vacuum source

Filter flask

Vacuum manifold

- 9. Add 750 µl of wash solution to the column and close the vacuum regulator dial until the gauge indicates -20 to -23" Hg. Continue to apply the vacuum until all wash solution has passed through the columns. Open the vacuum regulator until the gauge indicates 0" Hg.
- 10. Transfer the plasmid mini column to a 2 ml capless wash tube (provided) and centrifuge for 1 min to remove residual wash solution.
- Transfer the plasmid mini column to a 1.5–2.0 ml capped microcentrifuge tube (not provided). Add 50 µl of elution solution onto the membrane stack at the base of the column and allow 1 min for the solution to saturate the membranes. Centrifuge for 1 min to elute the plasmid.
- 12. Discard the mini column and store the eluted DNA at 4°C.

A protocol overview is available (see Figure 5).

Spin Format

The Aurum plasmid mini kit can be used with any commercially available microcentrifuge that can accommodate 1.5 ml and 2.0 ml tubes. All centrifugation steps are performed at maximum speed (≥12,000 x g) under ambient conditions. Please read the previous section "Guidelines for Using the Aurum Plasmid Mini Kit" before proceeding.

- 1. Transfer up to 12 OD•ml of plasmid-containing bacterial host to a 1.5–2.0 ml capped microcentrifuge tube (not provided). Pellet the cells by centrifugation for 1 min. Remove all supernatant by decanting or pipetting.
- 2. Add 250 µl of resuspension solution and vortex or pipet up and down until the cell pellet is completely resuspended.
- Add 250 µl of lysis solution and mix by inverting the capped tube briskly 6–8 times. DO NOT VORTEX OR SHAKE. The solution should become viscous and slightly clear.

Note: The neutralization solution should be added within 5 min after lysis.

- Add 350 μl of neutralization solution and mix by inverting the capped tube briskly 6–8 times. DO NOT VORTEX OR SHAKE. A visible precipitate should form.
- 5. Centrifuge the neutralized lysate for 5 min. A compact white debris pellet will form along the side or at the bottom of the tube. The supernatant or cleared lysate contains the plasmid DNA.
- 6. While centrifuging the lysate, insert a plasmid mini column into a 2 ml capless wash tube (provided).
- 7. By decanting or pipetting, transfer the cleared lysate from step 5 to the plasmid mini column. Centrifuge for 1 min.
- 8. The wash solution is supplied as a 5x concentrate. Add 4 volumes (100 ml) of 95–100% ethanol or reagent-grade (denatured) ethanol before initial use.
- Remove the plasmid mini column from the wash tube. Discard the filtrate from the tube, and replace the column into the same wash tube. Add 750 µl of wash solution and centrifuge for 1 min.
- 10. Discard the wash solution from the tube, and replace the column into the same wash tube. Centrifuge for 1 additional minute to remove residual wash solution.
- Transfer the plasmid mini column to a 1.5–2.0 ml capped microcentrifuge tube (not provided). Add 50 µl of elution solution onto the membrane stack at the base of the column and allow 1 min for the solution to saturate the membranes. Centrifuge for 1 min to elute the plasmid.
- 12. Discard the mini column and store the eluted DNA at 4°C.

A protocol overview is available (see Figure 6).

Aurum[™] Plasmid Mini Kit: Spin Format

Protocol Overview For complete protocol, consult instruction manual.

Growth and Isolation

- Grow 1–5 ml bacterial culture overnight or 16 hr.
- 2. Measure A₆₀₀ (if higher yield required).
- Transfer an appropriate volume of culture to a capped 2 ml tube. Centrifuge and decant supernatant.
- 4. Add 250 µl resuspension solution; vortex.
- Add 250 µl lysis solution; invert 6–8x.
- 6. Add 350 µl neutralization solution; invert 6-8x

Transfer cleared lysate (supernatant) to mini spin/vac column.

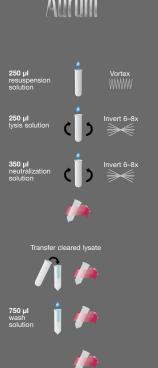
Centrifuge 1 min to bind plasmid DNA.

centrifuge 1 min. Decant flow-through

11. Centrifuge additional 1 min to remove

7. Centrifuge 5 min to pellet cell debris.

Purification


Decant flow-through.

10. Add 750 µl wash solution and

residual wash solution

8.

a

12. Transfer mini spin/vac column to a clean 1.5–2.0 ml capped tube.

 Add 50 µl elution solution. Let stand 1 min and then centrifuge 1 min to elute.

Collection of Purified Samples

 Purified DNA is ready to use or can be stored at 4°C.

Aurum Plasmid Mini Kit: Cat. #732-6400

For more information, call Technical Services at 1-800-4BIORAD (1-800-424-6723). Visit us on the Web at **www.bio-rad.com/aurum/**

Fig. 6. Aurum plasmid mini protocol overview: spin format

Section 7 Troubleshooting Guide

Problem	Possible Cause	Possible Solution	Problem	Possible Cause	Possible Solution
Low plasmid yields	Low copy number plasmid	Use high copy number constructs	Bacterial DNA contamination	Excessive amount of bacteria processed	Determine OD ₆₀₀ of culture and do not exceed 12 OD•ml of bacteria processed
	Poor plasmid propagation in culture	Inoculate large-scale cultures with overnight cultures generated from fresh colonies grown on a selective medium			
				Excessive agitation of lysate	Do not shake or vortex lysate after addition of lysis solution
		Determine optimum growth and plasmid propagation times for culture depending upon	RNA contamination	Excessive amount of bacteria processed	Determine OD ₆₀₀ of culture and do not exceed 12 OD•ml of bacteria processed
		host, broth, etc. Check age and concentration of		Compromised RNase activity due to age or storage conditions	Replace kit
	Excessive amount of bacteria processed	antibiotic Determine OD ₆₀₀ of culture and reduce OD•ml of bacteria processed to ensure efficient lysis	Low A _{260/280}	Excessive amount of bacteria processed	Determine OD ₆₀₀ of culture and do not exceed 12 OD•ml of bacteria processed
				Incomplete suspension of bacterial pellet	Ensure that the bacterial pellet is completely resuspended prior to addition of lysis solution
	Incomplete resuspension of bacteria pellet	Ensure that the bacterial pellet is completely resuspended prior to addition of lysis solution See protocol. Do not exceed 1 min			
				Incomplete mixing of resuspension, lysis, and neutralization solutions	Invert briskly 6–8 times after the addition of each reagent; check to ensure homogeneous mixing
	Excessive drying of column membranes				
	prior to elution Insufficient ethanol added to wash solution concentrate	centrifugation. Check that correct amount was added		Incomplete washing of column membranes	Use recommended wash solution volumes. Add correct amount of ethanol to wash solution concentrate.

Section 8 Ordering Information

Problem	Possible Cause	Possible Solution	Catalog #	Description
More than one band on analytical gel	Presence of multimers – typical and variable depending upon plasmid, bacterial host, etc.	Try different host or growth conditions	732-6460	Aurum Plasmid 96 Kit, 2 x 96 well preps, includes 2 grow blocks, 2 grow membranes, 2 binary units (2 lysate filtration plates and 2 plasmid binding plates), 2 collection plates, reagents, protocol overview, and instruction manual
	Nicking due to endonuclease activity	Use <i>endA</i> ⁻ host such as JM109, DH5α, or XL1-Blue	732-6470	Aurum Vacuum Manifold, includes column adaptor plate, 4 replacement luer caps, A and B stages, waste collection tray, vacuum regulator and gauge, tubing, protocol overview,
	Prolonged exposure to alkaline conditions	Add neutralization solution within 5 min after addition of lysis solution		and instruction manual
			732-6400	Aurum Plasmid Mini Kit, 100 preps, includes 100 plasmid binding columns, 100 capless collection tubes (2.0 ml),
Plasmid nicked/ degraded	Use of <i>end</i> A ⁺ bacterial host	Use <i>endA</i> ⁻ host such as JM109, DH5α, or XL1-Blue		reagents, protocol overview, and instruction manual
			732-6440	Aurum Plasmid Midi Kit, 20 preps, includes 20 lysate filtration columns, 20 plasmid binding columns, 20 adaptor
Plasmid prep performs poorly in enzymatic reactions	Plasmid nicked, degraded or denatured			caps, reagents, protocol overview, and instruction manual
		on an analytical gel Use <i>endA</i> ⁻ host	732-6450	Aurum Plasmid Maxi Kit, 10 preps, includes 10 lysate filtration columns, 10 plasmid binding columns, 10 adaptor
				caps, reagents, protocol overview, and instruction manual