

AMPLIFICATION CFX Manager[™] Software <u>Plate Quick Guide</u>

Run Setup Plate Tab

The Plate tab displays a preview of the plate loaded in the Run Setup window (Figure 1).

Click **Create New** to open the Plate Editor to create a new plate.

Click **Select Existing** to launch the file browser to load a plate file to use in a run or to edit.

Use the Express Load dropdown menu to directly load a plate file to use in a run or to edit.

Click **Edit Selected** to open the Plate Editor to edit the well contents of the selected plate.

Click the **Start Run** tab to proceed and start a run with the currently loaded plate.

Plate Editor

The Plate Editor is used to create a new plate or edit an existing one (Figure 2).

- 1. Use the Scan Mode dropdown menu in the Plate Editor toolbar to designate the data acquisition mode to be used during the run.
- Click Select Fluorophores to indicate the fluorophores that will be used in the run.
- 3. Within the plate diagram, select the wells to load.
- 4. Choose the Sample Type from the dropdown menu.
- 5. Click the appropriate checkbox(es) to load the fluorophore(s) in the selected wells.
- 6. Type the Target Name for each fluorophore (required for gene expression analysis) and press **Enter**, or choose one from the dropdown menu.
- 7. Type the Sample Name (required for gene expression analysis) and press **Enter**, or choose one from the dropdown menu.
- 8. To enter the Biological Set Name, check **Biological Set** in the View box at the bottom of the data analysis window.
- 9. For gene expression analysis, click **Experiment Settings** to assign reference targets and a control sample.

Kun Set	up																							1.55
AND P	votocol		Plate	••>	Stat	Run																		
	Create	New															Expre	ess Los	d					
Select Existing															Guick Plate_384 wells_All Channels.ptd						F			
Select	ted Plat	0	_																					
Quick	Plate_	384 we	a.A	Channe	biq ele																	Edit Se	lected.	
Previe	w																							
Ruorophores: FAM, HEX, Texas Red, Cy5															Plat	e Type	BR White				Scan Mode: All Channels			
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
A	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
8	U	U	U	U	U	U	U	U	U	V	V	U	U	U	U	U	U	U	U	U	U	U	U	U

Fig. 1. Plate tab in the Run Setup window. Load an existing plate or create a new plate for a run.

			Plate d	Plate editing									
							controls						
								1					
i	10	20	21	- 22	24	[
	15	20	21	22	23 \$-1 NGK	24	Select F	Fluorophores					
	NGK	NGK	NGK	NGK		NGK							
	GAK	GAK	GAK	GAK	GAK	GAK							
	0Hr	0Hr	0Hr				Sample Type	Unknown 🚩					
	U-2	U-2	U-2	\$-2	\$-2	\$-2							
	NGK	NGK	NGK	NGK	NGK	NGK	Lord	Target Name					
	GAK	GAK	GAK	GAK	GAK	GAK	LUGU	Nov					
	1Hr	1Hr	1Hr				🗹 FAM	NGK 🔽					
	NGK	NGK	NGK	NGK	NGK	NGK		CAK					
	GAK	GAK	GAK	GAK	GAK	GAK	M HEX	uan 🚩					
	2Hr	2Hr	2Hr	Gritt	Gint	Gritt							
	U-4	U-4	U-4	S-4	S-4	S-4	Load	Sample Name					
	NGK	NGK	NGK	NGK	NGK	NGK		20.					
	GAK	GAK	GAK	GAK	GAK	GAK		ZHI 💌					
	U-5	U-5	U-5	\$-5	\$-5	\$-5							
	NGK	NGK	NGK	NGK	NGK	NGK	Load	Replicate #					
	GAK	GAK	GAK	GAK	GAK	GAK		3					
	NGK	NGK	NGK	NGK	NGK	NGK	Rep	cate Series					
	GAK	GAK	GAK	GAK	GAK	GAK							
							SB						
				T-1	T-1	T-1	Experiment Settings						
				FAM	FAM	FAM							
				HEX	HEX	HEX	🕺 Clear Replicate #						
1				R	R	R							
				FAM	FAM	FAM	Clear Wells						
				HEX	HEX	HEX							

Entering Replicate Numbers

To designate a set of replicate wells, highlight the wells and type or choose a replicate number in the Replicate # box in the plate editing controls (Figure 3). Alternatively, to assign replicate numbers to several well subsets at once:

- 1. Select wells in the plate diagram and click **Replicate Series**. The Replicate Series editing window opens (Figure 3).
- 2. Enter the Replicate Group Size and the Starting Replicate #.
- 3. Indicate whether replicates are loaded horizontally or vertically.
- 4. Click **Apply** to enter the replicate numbers.

Creating a Standard Curve

To enter the starting target concentration of one standard, select the wells loaded with Sample Type/Standard, enter a value under Concentration in the plate editing controls (Figure 4), designate All or a specific fluorophore, and then click the **Load** checkbox. Alternatively, to enter concentrations for the entire standard curve series at once:

- 1. Select the wells that have also been assigned consecutive replicate numbers and click **Dilution Series**. The Dilution Series window opens (Figure 4).
- 2. Enter the Starting Concentration of the dilution series.
- 3. Enter the numbers of the first and last replicates in the series.
- 4. Enter the Dilution Factor and indicate whether the dilution is increasing or decreasing (that is, whether the value entered in Step 2 is the lowest or highest concentration).
- 5. Click **Apply** to assign the dilution series.

Creating Well Groups

To create well groups that are analyzed independently:

- 1. Click the **Well Groups** button in the Plate Editor toolbar. The Well Groups Manager window opens (Figure 5).
- 2. Click Add to create a new group.
- 3. In the plate diagram, select the wells that will constitute the well group.
- 4. Click **OK** to return to the Plate Editor window.

Bio-Rad's real-time thermal cyclers are covered by one or more of the following U.S. patents or their foreign counterparts owned by Eppendorf AG: U.S. Patent Numbers 6,767,512 and 7,074,367.

For more information, visit www.bio-rad.com/web/ampSW384plate.

Life Science

Group

Bio-Rad Laboratories, Inc.

Fig. 3. Replicate Series editing window opens in the plate editing controls.

Fig. 4. Dilution Series window for creating a standard curve opens in the plate editing controls.

Fig. 5. Well Groups Manager window.