Plate Layout Template

Calculation Worksheet

Plan Plate Layout

1. Fill out the 96-well plate template as instructed in the Plan Plate Layout section.

If using either the Diabetes f	ixed panel (either human or	mouse) or One Diabetes
single set tube/analyte,	follow these directions:	

Enter the number of wells that will be used in the assay: _____(1)

Calculations for Coupled Beads

- 1. Determine the volume of 1x coupled beads needed.
 - a) Each well requires 50 μ l of coupled beads (1x): _____ (1) x 50 μ l = ____ μ l (2)
 - b) Include a 20% excess to ensure enough volume: _____ μ I (2) x 0.20 = ____ μ I (3)
 - c) Total volume of 1x coupled beads: _____ µl (2) + _____ µl (3) = ____ µl (4)
 - d) Volume of **20x coupled beads** stock: _____µl (4)/20 = ____µl (5)
 - e) Volume of **Assay Buffer** required: _____ µl (4) _____ µl (5) = _____ (6)

Calculations for Detection Antibodies

2. Determine the volume of 1x detection antibody needed.

- a) Each well requires 25 μ l of detection antibodies (1x): _____ (1) x 25 μ l = _____ μ l (7)
- b) Include a 25% excess to ensure enough volume: μ (7) x 0.25 = μ (8)
- c) Total volume of 1x detection antibodies: _____ µl (7) + ____ µl (8) = ____ µl (9)
- d) Volume of **20x Detection Antibodies** stock: _____ μ l (9)/20 = ____ μ l (10)
- e) Volume of Detection Antibody Diluent required: _____ µl (9) _____ µl (10) = ____ µl (11)

Calculations for Streptavidin-PE

- 3. Determine the volume of 1x streptavidin PE needed.
 - a) Each well requires 50 µl of streptavidin PE (1x): _____ (1) x 50 µl = ____ µl (10)
 - b) Include a 25% excess to ensure enough volume: _____ μ l (10) x 0.25 = ____ μ l (11)
 - c) Total volume of 1x detection antibodies: μ I (10) + μ I (11) = μ I (12)
 - d) Volume of **100x Streptavidin PE** required: _____ µl (12) / 100 = ____ µl (13)
 - e) Volume of **Assay Buffer** required: _____ μl 12) ____ μl (13) = ____ μl (14)

If multiplexing single set (singleplex) diabetes analytes, follow these directions:

Enter the number of wells that will be used in the assay: _____ (1)

Calculations for Coupled Beads

1. Determine the volume of 1x coupled beads needed.

- a) Each well requires 50 µl of coupled beads (1x): _____ (1) x 50 µl = ____ µl (2)
- b) Include a 20% excess to ensure enough volume: _____ μ I (2) x 0.20 = ____ μ I (3)
- c) Total volume of 1x coupled beads: _____ µl (2) + _____ µl (3) = ____ µl (4)
- d) Enter the number of diabetes single set (or analytes) tubes that will be multiplexed = _____(5)
- e) Volume of 20x Coupled Beads required from each diabetes coupled beads tube:
 - _____µl (4) /20 = ____µl (6)
- f) Total volume of diabetes bead stock required: _____(5) x ____ µl (6) = _____ µl (7)
- g) Volume of **Assay Buffer** required: _____μl (4) ____μl (7) = ____μl (8)

Calculations for Detection Antibodies

- 2. Determine the volume of 1x detection antibody needed.
 - a) Each well requires 25 μ l of detection antibodies (1x): _____ (1) x 25 μ l = ____ μ l (9)
 - b) Include a 25% excess to ensure enough volume: _____ μ l (9) x 0.25 = ____ μ l (10)
 - c) Total volume of 1x detection antibodies: _____ µl (9) + ____ µl (10) = ____ µl (11)
 - d) Enter the number of diabetes single set (or analytes) tubes that will be multiplexed = _____(5)
 - e) Volume of **20x Detection Antibodies** required from **each diabetes detection antibody tube**:
 _____µI (11) /20 = _____µI (12)
 - f) Total volume of diabetes detection antibody stock: μ (12) x (5) = μ (13)
 - g) Volume of **Detection Antibody Diluent** required: _____µl (11) ____µl (13) = ___µl (14)

Calculations for Streptavidin-PE

- 3. Determine the volume of 1x streptavidin PE needed.
 - a) Each well requires 50 µl of streptavidin PE (1x): _____ (1) x 50 µl = ____ µl (15)
 - b) Include a 25% excess to ensure enough volume: _____ μ l (15) x 0.25 = ____ μ l (16)
 - c) Total volume of 1x detection antibodies: _____ µl (15) + ____ µl (16) = ____ µl (17)
 - d) Volume of 100x Streptavidin PE required: _____ μ l (17) / 100 = ____ μ l (18)
 - e) Volume of Assay Buffer required: _____μl (17) _____μl (18) = ____μl (19)

If multiplexing diabetes (20x) and cytokine (10x) assays, follow these directions:

Enter the number of wells that will be used in the assay: _____ (1)

Enter the number of diabetes tubes (either single set or multiplex) that will be multiplexed: _____ (2)

Enter the number of cytokine tubes(either single set or multiplex) that will be multiplexed: _____ (3)

Calculations for Coupled Beads

- 1. Determine the volume of 1x diabetes and cytokines coupled beads needed.
 - a) Each well requires 50 μ l of coupled beads (1x): _____ (1) x 50 μ l = ____ μ l (4)
 - b) Include a 20% excess to ensure enough volume: _____ μl (4) x 0.20 = ____ μl (5)
 - c) Total volume of 1x coupled beads: _____ µl (4) + ____ µl (5) = ____ µl (6)
 - d) Volume of 20x diabetes coupled beads stock required from each diabetes tube(s):

_____μl (6) / 20 = ____μl (7)

e) Volume of 10x cytokines coupled beads stock required from each cytokines tube(s):

_____μl (6) / 10 = ____μl (8)

- f) Total volume of diabetes bead stock required: _____µl (7) x _____ (2) = ____µl (9)
- g) Total volume of cytokine bead stock required: _____µl (8) x _____ (3) = ____µl (10)
- h) Total volume of diabetes and cytokine bead stock required: μ (9) + (10) = μ (11)
- i) Volume of **Assay Buffer** required: _____μl (6) _____μl (11) = ____μl (12)

Calculations for Detection Antibodies

- 2. Determine the volume of 1x diabetes and cytokines detection antibodies needed.
 - a) Each well requires 25 µl of detection antibodies (1x): _____ (1) x 25 µl = ____ µl (13)
 - b) Include a 25% excess to ensure enough volume: _____ μ l (13) x 0.25 = ____ μ l (14)
 - c) Total volume of 1x detection antibodies: _____ µl (13) + ____ µl (14) = ____ µl (15)
 - d) Volume of 20x Detection Antibodies required from each diabetes tube(s):

_____µl (15) / 20 = ____µl (16)

e) Volume of 10x Detection Antibodies required from each cytokines tube(s):

_____μl (15) / 10 = _____μl (17)

- f) Total volume of diabetes detection antibodies stock required: _____µl (16) x _____ (2) =_____µl (18)
- g) Total volume of cytokine detection antibodies stock required: _____ µl (17) x _____ (3) =____ µl (19)
- h) Total volume of diabetes and cytokine detection antibodies required:
 - _____μl (18) + _____ (19) = ____μl (20)
- i) Volume of **Detection Antibody Diluent** required: $\mu l (15) \mu l (20) = \mu l (21)$

Calculations for Streptavidin-PE

- 3. Determine the volume of 1x streptavidin PE needed.
 - d) Each well requires 50 μ l of streptavidin PE (1x): _____ (1) x 50 μ l = _____ μ l (15)
 - e) Include a 25% excess to ensure enough volume: _____ μ I (15) x 0.25 = ____ μ I (16)
 - f) Total volume of 1x detection antibodies: _____ μ l (15) + ____ μ l (16) = ____ μ l (17)
 - d) Volume of 100x Streptavidin PE required: _____ µl (17) / 100 = ____ µl (18)
 - e) Volume of **Assay Buffer** required: _____μl (17) _____μl (18) = _____μl (19)