Plate Layout Template

Calculation Worksheet

Plan Plate Layout

1. Fill out the 96-well plate template as instructed in the Plan Plate Layout section.

If using either the **Diabetes fixed panel (either human or mouse) or One Diabetes single set tube/analyte**, follow these directions:

Enter the number of wells that will be used in the assay: (1)

Calculations for Coupled Beads

- 1. Determine the volume of 1x coupled beads needed.
 - a) Each well requires 50 µl of coupled beads (1x): _____ (1) x 50 µl = ____ µl (2)
 - b) Include a 20% excess to ensure enough volume: _____ μl (2) x 0.20 = ____ μl (3)
 - c) Total volume of 1x coupled beads: _____ µl (2) + ____ µl (3) = ____ µl (4)
 - d) Volume of **20x coupled beads** stock: _____ μl (4)/20 = ____ μl (5)
 - e) Volume of **Assay Buffer** required: _____ µl (4) ____ µl (5) = ____ (6)

Calculations for Detection Antibodies

- 2. Determine the volume of 1x detection antibody needed.
 - a) Each well requires 25 μ l of detection antibodies (1x): _____ (1) x 25 μ l = ____ μ l (7)
 - b) Include a 25% excess to ensure enough volume: μ (7) x 0.25 = μ (8)
 - c) Total volume of 1x detection antibodies: _____ µl (7) + ____ µl (8) = ____ µl (9)
 - d) Volume of **20x Detection Antibodies** stock: _____ µl (9)/20 = ____ µl (10)
 - e) Volume of **Detection Antibody Diluent** required: _____ µl (9) ____ µl (10) = ____ µl (11)

Calculations for Streptavidin-PE

- 3. Determine the volume of 1x streptavidin PE needed.
 - a) Each well requires 50 μ l of streptavidin PE (1x): _____ (1) x 50 μ l = ____ μ l (10)
 - b) Include a 25% excess to ensure enough volume: μ I (10) x 0.25 = μ I (11)
 - c) Total volume of 1x detection antibodies: ____ μ l (10) + ___ μ l (11) = ___ μ l (12)
 - d) Volume of 100x Streptavidin PE required: μ I (12) / 100 = μ I (13)
 - e) Volume of **Assay Buffer** required: _____ µl (12) _____ µl (13) = ____ µl (14)

If multiplexing single set (singleplex) diabetes analytes, follow these directions: Enter the number of wells that will be used in the assay: _____ (1) **Calculations for Coupled Beads** 1. Determine the volume of 1x coupled beads needed. a) Each well requires 50 μ l of coupled beads (1x): (1) x 50 μ l = μ l (2) b) Include a 20% excess to ensure enough volume: _____ µl (2) x 0.20 = ____ µl (3) c) Total volume of 1x coupled beads: _____ µl (2) + ____ µl (3) = ____ µl (4) d) Enter the number of diabetes single set (or analytes) tubes that will be multiplexed = (5) e) Volume of 20x Coupled Beads required from each diabetes coupled beads tube: μ (4) μ (7) μ (6) f) Total volume of diabetes bead stock required: ______(5) x _____ μl (6) = _____ μl (7) g) Volume of **Assay Buffer** required: ____ μl (4) ___ μl (7) = ___ μl (8) Calculations for Detection Antibodies 2. Determine the volume of 1x detection antibody needed. a) Each well requires 25 μ l of detection antibodies (1x): (1) x 25 μ l = μ l (9) b) Include a 25% excess to ensure enough volume: _____ µI (9) x 0.25 = ____ µI (10) c) Total volume of 1x detection antibodies: μ I (9) + μ I (10) = μ I (11) d) Enter the number of diabetes single set (or analytes) tubes that will be multiplexed = (5) e) Volume of 20x Detection Antibodies required from each diabetes detection antibody tube: _____ µl (11) /20 =____ µl (12) f) Total volume of diabetes detection antibody stock: _____ µl (12) x ____(5) = ____ µl (13) g) Volume of **Detection Antibody Diluent** required: _____µl (11) – ____µl (13) = ____µl (14) Calculations for Streptavidin-PE 3. Determine the volume of 1x streptavidin PE needed. a) Each well requires 50 μl of streptavidin PE (1x): _____ (1) x 50 μl = ____ μl (15) b) Include a 25% excess to ensure enough volume: _____ µl (15) x 0.25 = ____ µl (16) c) Total volume of 1x detection antibodies: _____ µl (15) + ____ µl (16) = ____ µl (17) d) Volume of **100x Streptavidin PE** required: μ I (17) / 100 = μ I (18)

e) Volume of **Assay Buffer** required: _____ µl (17) ____ µl (18) = ____ µl (19)

If multiplexing diabetes (20x) and cytokine (10x) assays, follow these directions:						
Enter the number of wells that will be used in the assay: (1)						
Enter the number of diabetes tubes (either single set or multiplex) that will be multiplexed: (2)						
Enter the number of cytokine tubes(either single set or multiplex) that will be multiplexed:(3)						
Calculations for Coupled Beads						
1. Determine the volume of 1x diabetes and cytokines coupled beads needed.						
a) Each well requires 50 μ l of coupled beads (1x): (1) x 50 μ l = μ l (4)						
b) Include a 20% excess to ensure enough volume: μ I (4) x 0.20 = μ I (5)						
c) Total volume of 1x coupled beads: µl (4) + µl (5) = µl (6)						
d) Volume of 20x diabetes coupled beads stock required from each diabetes tube(s):						
μl (6) / 20 = μl (7)						
e) Volume of 10x cytokines coupled beads stock required from each cytokines tube(s):						
µl (6) / 10 = µl (8)						
f) Total volume of diabetes bead stock required: µl (7) x (2) = µl (9)						
g) Total volume of cytokine bead stock required: µl (8) x (3) = µl (10)						
h) Total volume of diabetes and cytokine bead stock required: μ l (9) + (10) = μ l (1						
i) Volume of Assay Buffer required: µl (6) µl (11) = µl (12)						
Calculations for Detection Antibodies						
2. Determine the volume of 1x diabetes and cytokines detection antibodies needed.						
a) Each well requires 25 μ l of detection antibodies (1x): (1) x 25 μ l = μ l (13)						
b) Include a 25% excess to ensure enough volume: μ I (13) x 0.25 = μ I (14)						
c) Total volume of 1x detection antibodies: µl (13) + µl (14) = µl (15)						
d) Volume of 20x Detection Antibodies required from each diabetes tube(s):						
µl (15) / 20 = µl (16)						

e)	Volume of 10x Detect	ion Antibodies	required from	each cytokii	nes tube(s):

- f) Total volume of diabetes detection antibodies stock required: ____ µl (16) x ____ (2) = ___ µl (18)
- g) Total volume of cytokine detection antibodies stock required: _____ µl (17) x _____ (3) = ____ µl (19)
- h) Total volume of diabetes and cytokine detection antibodies required:

i) Volume of **Detection Antibody Diluent** required:
$$\mu$$
I (15) – μ I (20) = μ I (21)

Calculations for Streptavidin-PE

- 3. Determine the volume of 1x streptavidin PE needed.
 - d) Each well requires 50 μl of streptavidin PE (1x): _____ (1) x 50 μl = ____ μl (15)
 - e) Include a 25% excess to ensure enough volume: _____ µI (15) x 0.25 = ____ µI (16)
 - f) Total volume of 1x detection antibodies: _____ µl (15) + ____ µl (16) = ____ µl (17)
 - d) Volume of **100x Streptavidin PE** required: μ I (17) / 100 = μ I (18)
 - e) Volume of **Assay Buffer** required: _____ µl (17) ____ µl (18) = ____ µl (19)