iQ-Check® Salmonella II Kit
Catalog #: 357-8123

User Guide

Test for the real-time PCR detection of Salmonella spp. in food, animal feed and environmental samples
TABLE OF CONTENTS

I. Introduction

II. The iQ-Check *Salmonella* II technology

III. Kit components

IV. Shelf life and storage

V. Material required but not supplied

VI. Precautions and recommendations

VII. Protocol
 A. Sample enrichment
 B. DNA extraction
 C. Real-time PCR
 D. Data analysis

VIII. Confirmation of positive results

IX. Confirmation of single colonies using iQ-Check

X. Test performances and validations

XI. References

APPENDIX: PCR Mix Calculation Guide
I. INTRODUCTION

Salmonellae are the most frequent causes of food poisoning in the world, despite the many preventive measures taken to control these organisms. In the United States and other industrialized countries, declared cases of salmonellosis vary around 70,000-100,000, however the true incidence of food-borne Salmonella infection is estimated to be much higher, in the order of 4-5 million cases a year. Eggs, dairy products, meat and poultry are the most common foods associated with the transmission of Salmonellae (65% of cases). More than 2000 serotypes have been identified, all of which are potentially pathogenic to man. Due to the low infective dose and the serious threat posed to producers and consumers of food, several countries now require total absence of salmonellae in food products.

Classical culture methods are often long and tedious. In comparison, iQ-Check Salmonella II is a simple and rapid qualitative test, allowing the detection of specific DNA sequences unique to Salmonella spp. found in food products, animal feed and environmental samples. Using real-time polymerase chain reaction (PCR), Salmonella spp. specific DNA sequences are amplified and detected simultaneously by means of fluorescent probes. Up to 94 samples can be processed, with a minimized risk of contamination and an easy to use procedure. The intended users of this kit are trained laboratory personnel who are performing tests to detect Salmonella spp. The use of this test allows results to be obtained within a few hours following enrichment of a sample.

II. THE iQ-Check Salmonella II TECHNOLOGY

The iQ-Check Salmonella II kit is a test based on gene amplification and detection by real-time PCR. Ready-to-use PCR reagents contain oligonucleotides (primers and probes) specific for Salmonella spp., as well as DNA polymerase and nucleotides. Detection and data analysis are optimized for use with a Bio-Rad real-time PCR instrument, such as the Chromo4™, the MiniOpticon, the CFX96™ or the CFX96 Deep Well™ systems.

PCR is a powerful technique used to generate many copies of target DNA. During the PCR reaction, several cycles of heating and cooling allow DNA denaturation, by heat, followed by primers binding to the target region. The DNA polymerase then uses these primers and deoxynucleotide triphosphates (dNTPs) to extend the DNA, creating copies of the target DNA. These copies are called amplicons.
In real-time PCR, specific probes are used to detect the DNA during the amplification, by hybridizing to the amplicons. These probes are linked to a fluorophore which fluoresces only when hybridized to the target sequence; FAM is the fluorophore linked to the probe hybridizing to the *Salmonella* spp. specific DNA sequence. In the absence of target DNA, no fluorescence will be detected. As the amount of amplicons increases with each round of amplification, fluorescence intensity also increases. During each PCR cycle, at the annealing step, the optical module or detector measures this fluorescence, whereas the associated software plots the fluorescence intensity versus number of cycles. This method allows a simple determination of the presence, or absence, of *Salmonella* spp in a sample.

A synthetic DNA "internal control" is included in the reaction mix. This control is amplified with a specific probe at the same time as the *Salmonella* target DNA sequence, and detected by a second fluorophore. It allows for the validation of any negative result.

This test allows the detection of *Salmonella* spp. in all food products, animal feed and environmental samples previously enriched by culture in buffered peptone water. It includes the following four main steps:

III. KIT COMPONENTS

The iQ-Check *Salmonella* II kit contains sufficient reagents for 96 tests.

<table>
<thead>
<tr>
<th>Reference ID</th>
<th>Reagent</th>
<th>Quantity Provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Lysis reagent</td>
<td>1 bottle (20 mL)</td>
</tr>
<tr>
<td>B</td>
<td>Fluorescent probes</td>
<td>1 tube (0.55 mL)</td>
</tr>
<tr>
<td>C</td>
<td>Amplification mix</td>
<td>1 tube (4.4 mL)</td>
</tr>
<tr>
<td>D</td>
<td>PCR negative control</td>
<td>1 tube (0.5 mL)</td>
</tr>
<tr>
<td>E</td>
<td>PCR positive control</td>
<td>1 tube (0.25 mL)</td>
</tr>
</tbody>
</table>

IV. SHELF LIFE AND STORAGE

Once received, the kit must be stored between +2°C and +8°C. Reagents stored at this temperature can be used until the expiration date indicated on the reagent tube.
V. MATERIAL REQUIRED BUT NOT SUPPLIED

Equipment
- Stomacher®, masticator or equivalent for homogenizing test samples.
- Incubator for sample microbiological enrichment.
- Specific for extraction in 1.5 ml tube
 - Bench top centrifuge (max. 10,000-12,000 g).
 - Dry heat block (100°C ± 5°C).
- Specific for extraction in deepwell plate
 - Centrifuge with rotor for 96-wells plates (max. 2,250 g).
 - Dry heat block (100°C ± 5°C).
 - or agitator-incubator for deepwell plates, such as a “Thermomixer” (Eppendorf)
- Vortex apparatus.
- Magnetic stir plate.
- Optional for Standard II extraction protocol
 - Cell Disruptor, such as a “Disruptor Genie” (Scientific Industries).
 - DW40, Bio-Rad cat #: 359-0137.
- 20 μL, 200 μL and 1000 μL micropipettes.
- Combitip pipettes or equivalent repeat pipettors.
- Bio-Rad real-time PCR system, e.g. Chromo4, MiniOpticon, CFX96 or CFX96 Deep Well systems.
See real-time PCR system user guide for iQ-Check kits (Chromo4 #: 93269 - iQ™5 #: 93270 - iCycler iQ™ #: 93271 - CFX96/CFX96 Deep Well/MiniOpticon, #: 93893b).

* Contact Bio-Rad for detailed information on instruments recommended by our technical department.

Note: We recommend using a universal power source (UPS) with the thermal cycler.

Supplies
- Enrichment medium: buffered peptone water, (E.g. Bio-Rad cat.#: 356-4684, 500 g; 355-4179, 225 mL x 6 bottles; 355-5789, 2.3 L x 5 bags; 355-5790, 5 L x 2 bags).
- Specific for environmental primary production samples: supplement for enrichment: RAPID’Salmonella Capsule, Bio-Rad cat.#: 356-4710, x100, Quantity for 250 mL; 356-4709, x100, Quantity for 2.5 L, 356-4712, Quantity for 100 tests.
• Stomacher bag with incorporated filter.
• Environmental sponges.
• Environmental swabs.
• Neutralizing broth for sponges and swabs, such as Dey-Engley (D/E).
• Specific for extraction in tube
 - 1.5 mL conical screwcap sterile tubes (E.g. Bio-Rad cat. #: 224-0110).
• Specific for extraction in deepwell plate
 - 1 mL deepwell plate, Bio-Rad cat.#: 359-0132.
 - Plastic sealing film, Bio-Rad cat.#: 359-0139.
 - Pre-pierced sealing film, such as “X-Pierce™ Sealing Films”, Bio-Rad cat #: 360-0040, for North America only; cat #: 359-3977, x100.
• Specific for Standard II and Easy II extraction protocols
 - Lysis beads (reagent F) Bio-Rad cat. #: 357-8136.
 - 200 μL wide opening tips.
• RAPID® Salmonella Agar**, Bio-Rad cat #: 356-3961, 90 mm x 20 dishes; 356-3962, 90 mm x 100 dishes ; 356-4705, 500 g.
 ** Can be used outside scope of AOAC-RI validation.
• PCR plates, tubes, sealing tape and caps, see real-time PCR system user guide for iQ-Check kits.
• 1 mL and 10 mL pipettes.
• Sterile filter tips, adaptable to 20 μL, 200 μL and 1000 μL micropipettes.
• Tips for Combitip pipettes or equivalent repeat pipettors, sterile, individual package.
• 2 mL and 5 mL sterile test tubes.
• Powder-free gloves.
• Distilled sterile water.
• Bleach 5%.
• Cleaning agent such as DNA AWAY® or RNase AWAY®.

VI. PRECAUTIONS AND RECOMMENDATIONS FOR BEST RESULTS
• This test must be performed by adequately trained personnel.
• Food samples and enrichment cultures must be handled as potentially infectious material and eliminated according to local rules and regulations.
• All potentially infectious material should be autoclaved before disposal.
• The quality of results depends on strict compliance with the following Good Laboratory Practice (for example the EN ISO 7218 standard), especially concerning PCR:
 - The laboratory equipment (pipettes, tubes, etc.) must not circulate from one work station to another.
- It is essential to use a positive control and a negative control for each series of amplification reactions.
- Do not use reagents after their expiration date.
- Vortex reagents from the kit before using them to ensure homogeneity.
- Periodically, verify the accuracy and precision of pipettes, as well as correct functioning of the instruments.
- Change gloves often, especially if you suspect they are contaminated.
- Clean work spaces periodically with at least 5% bleach and other decontaminating agent such as DNA AWAY®.
- Use powder-free gloves and avoid fingerprints and writing on caps of tubes. Both cases will interfere with data acquisition.

• It is strongly advised to follow the general requirements described in the standard EN ISO 22174:2005 “Microbiology of food and animal feeding stuffs – Polymerase chain reaction (PCR) for the detection of food pathogens – General requirements and definitions”.

VII. PROTOCOL
It is strongly recommended to read the entire protocol before starting the test.

Enrichment conditions are detailed hereafter. DNA extraction can be performed according to four different protocols:
- The Easy I and Easy II protocols require a 100 μl sample volume. The Standard I and Standard II protocols require a 1 ml sample volume.
- The Standard II and Easy II include a grinding step.
The following table outlines the different protocols that can be used depending on the application and the scope of the validation:

<table>
<thead>
<tr>
<th>Scope (matrices)</th>
<th>Enrichment</th>
<th>DNA extraction method</th>
<th>DNA extraction format</th>
<th>Certification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food products, animal feed, & environmental (1) samples</td>
<td>BPW 18h ± 2h 37°C ± 1°C</td>
<td>Standard I</td>
<td>Tube</td>
<td>NF VALIDATION</td>
</tr>
<tr>
<td></td>
<td>BPW 21h ± 1h 37°C ± 1°C</td>
<td>Easy I</td>
<td>Tube Deepwell</td>
<td>NF VALIDATION</td>
</tr>
<tr>
<td>Raw meats</td>
<td>Pre-warmed BPW 10h ± 2h 37°C ± 1°C</td>
<td>Standard II</td>
<td>Tube Deepwell</td>
<td>NF VALIDATION</td>
</tr>
<tr>
<td>Raw beef (2)</td>
<td>BPW 21h ± 1h 37°C ± 1°C</td>
<td>Easy II</td>
<td>Tube Deepwell</td>
<td>NF VALIDATION</td>
</tr>
<tr>
<td>Meat products</td>
<td>BPW 18h ± 2h 37°C± 1°C</td>
<td>Easy II</td>
<td>Tube Deepwell</td>
<td>NF VALIDATION</td>
</tr>
<tr>
<td>Environmental primary production samples</td>
<td>Suppl. BPW 19h ± 1h 41.5°C ± 1°C + BPW 5h ± 1h 37°C ± 1°C</td>
<td>Easy I Standard II (3)</td>
<td>Tube Deepwell</td>
<td>NF VALIDATION</td>
</tr>
<tr>
<td>Selected food products and environmental surfaces</td>
<td>BPW 21h ± 1h 37°C ± 1°C</td>
<td>Easy I</td>
<td>Tube Deepwell</td>
<td>AOAC-RI</td>
</tr>
<tr>
<td>Raw ground beef (2)</td>
<td>Pre-warmed BPW 10h ± 2h 36°C ± 1°C</td>
<td>Standard II</td>
<td>Tube Deepwell</td>
<td>AOAC-RI</td>
</tr>
</tbody>
</table>

1 Except environmental primary production samples.
2 Protocol used when also detecting E.coli O157:H7 from the same raw ground beef sample.
3 In this protocol, the lysis reagent used is reagent A only (without reagent F).

A. Sample Enrichment

Enrichment media must be warmed at room temperature before use.

Short enrichment are sensitive to incubation conditions. It is necessary to warm the enrichment broths at the incubation temperature before use and to strictly respect temperatures indicated.

The duration of the sample preparation, time between the end of the preheating stage of the enrichment broth and the beginning of the
incubation phase of the food sample, must not exceed 45 minutes. The use of a ventilated incubator is recommended.

Homogenize n g of sample in 9 x n mL of buffered peptone water (for example 25 g in 225 mL; in the scope of the NF VALIDATION mark, respect ISO standards 6887-2 to 6 about sample preparation) in a stomacher bag with incorporated filter.

Within the scope of AOAC validation for larger sample sizes, homogenize 375g in 1,125ml of buffered peptone water in a stomacher bag with incorporated filter. Note: within the scope of the NF VALIDATION mark, test portions weighing more than 25 g have not been tested.

Incubate, without shaking, for times and at temperatures indicated in the table above.

Further information:
1. Environmental primary production samples
 - Incubate the sample in buffered peptone water supplemented with the RAPID’Salmonella Capsule (refer to the table for incubation conditions).
 - After this first enrichment, for each sample, dispense 900 μl of buffered peptone water in tube or in well of a deepwell plate.
 - Transfer 100 μl of pre-enriched sample.
 - Seal the deepwell plate and refer to the table for incubation conditions.
 - Follow the Easy I or Standard II protocol for DNA extraction. Note: the Primary Enrichment can be stored between +2°C and +8°C for 16 hours following the end of the incubation at 41.5°C, before to proceed to the Secondary Enrichment.

2. Standard I protocol said “Alternative” (for all matrice except environmental primary production).
 In the scope of the NF VALIDATION certified method, for samples showing inhibition with a 1/10 dilution of the DNA extract, it is possible to remove this inhibition by using the following modified enrichment protocol:
 - Homogenize n g of sample in 9 x n mL (for example 25 g in 225 mL) of buffered peptone water.
 - Incubate without shaking for 18h ± 1 hour at 37°C.
 - Shake the bag, sample 20 μL of the suspension and add it to 1 mL of buffered peptone water (warmed to 37°C).
 - Incubate without shaking for 4h ± 1 hour at 37°C.
 - Follow the Standard I protocol for the DNA extraction.

3. Surfaces analyzes (in the scope of AOAC-RI Validation)
- Pre-moisten swabs and sponges with Dey-Engley (DE) broth.
- For surfaces being analyzed with swabs, sample a 1” x 1” (2.54 cm x 2.54 cm) area.
- For surfaces being analyzed with sponges, sample a 4” x 4” (10.16 cm x 10.16 cm) area.
- Add sponges or swabs to buffered peptone water enrichment broth.

B. DNA Extraction

General recommendations:
- Before starting the test, turn on the heat block to preheat it and set it to 95°C - 100°C.
- In general, avoid shaking the enrichment bag and collecting large fragments of food debris. For food samples with a fatty supernatant, collect the sample just below this layer.
- Open tubes and wells carefully to avoid any possible cross contaminations.
- Cool the deepwell plate before pipetting directly through pre-pierced sealing film.
- Pipette the lysis reagent while it is stirring at medium speed with the magnetic bar contained in the bottle, in order to keep it in suspension.
- For Standard II and Easy II protocols, the lysis reagent has to be reconstituted:
 - Carefully pour all the contents from reagent F (lysis beads) into reagent A (lysis reagent).
 - Use consumables with a wide enough tip to allow pipetting of the homogenized lysis reagent.
 - Reagent F (lysis beads) is included in the iQ-Check *E.coli* O157:H7 kit or can be ordered separately.
 - The lysis reagent mixed with lysis beads (reagents A + F) has a shelf life of 6 months, when stored at 4°C.

Standard I protocol
1 - Collect 1 mL of decanted enriched sample into a tube.
2 - Centrifuge at 10,000-12,000 g. for 5 minutes.
3 - Discard all the supernatant.
4 - Add 200 μL of the lysis reagent (reagent A) to the pellet.
5 - Resuspend pellet by pipetting the reagent up and down in the tube.
6 - Vortex at high speed.
7 - Place the tube in the heat block at 95°C - 100°C for 10 to 15 minutes.
8 - Vortex at high speed.
9 - Centrifuge at 10,000-12,000 g for 5 minutes.
If you choose to temporarily stop the procedure, this is the recommended stopping point.
The supernatant can be stored for up to 1 year at -20°C. Before reusing it, always allow it to thaw, homogenize, and then centrifuge at 10,000-12,000 g for 5 minutes.

Standard II protocol (includes grinding step)
1 - Collect 1 ml of decanted enriched sample into a tube or in a well of a deepwell plate. Seal the deepwell plate with a plastic film.
 Note: Shake the suspension to homogenize the culture and then allow any debris to decant before collecting the sample.
2 - For tubes, centrifuge at 10,000-12,000 g for 5 minutes then discard the supernatant.
 For deepwell plates centrifuge at 2,250 g for 20 minutes and discard all the supernatant manually or using the DW40.
3 - Add 200 μL of the homogenized lysis reagent (reagents A + F) to the pellet and resuspend pellet by pipetting the reagent up and down. Close the tubes or seal the deepwell plate with pre-pierced sealing film.
 Note: Gently shake the lysis reagent by hand first to resuspend the beads • *For primary production samples, use the reagent A without reagent F.*
4 - Place the tube in the Cell Disruptor for 3 min ± 1min, or the deepwell plate in the plate agitator-incubator at 1,300 rpm at 99°C.
5 - Incubate in the appropriate heat block at 95°C - 100°C for 10 to 15 minutes.
6 - Vortex the tubes at high speed and centrifuge them at 10,000-12,000 g for 5 minutes. Centrifuge the deepwell plate at 2,250 g for 2 minutes.

If you choose to temporarily stop the procedure, this is the recommended stopping point.
The supernatant can be stored for up to 1 year at -20°C. Before reusing it, always allow it to thaw, homogenize, and then centrifuge tubes at 10,000-12,000 g for 5 minutes.

Easy I protocol
1 - Aliquote 100 μL of homogenized lysis reagent A to tubes or wells of a deepwell plate.
2 - Add 100 μL of the decanted enriched sample.
 Mix by pipetting up and down and close the tube with caps or seal the deepwell plate with pre-pierced sealing film.
3 - Incubate in the appropriate heat block at 95°C - 100°C for 10 to 15 minutes or in the plate incubator-agitator for 15 to 20 minutes at 1,300 rpm.

4 - Vortex tubes at high speed.

5 - If using a deepwell plate, allow to cool down to room temperature.

6 - Centrifuge at 10,000-12,000 g at least 2 minutes for tubes. Centrifugation is not needed for deepwell plate.

If you choose to temporarily stop the procedure, this is the recommended stopping point.

The supernatant can be stored for up to 1 year at -20°C. Before reusing it, always allow it to thaw, homogenize, and then centrifuge tubes at 10,000-12,000 g for 5 minutes.

Easy II protocol (includes a grinding step)

1 - Aliquote 100 μL of homogenized lysis reagent (reagents A + F) to wells of a deepwell plate.
 Note: Gently shake the lysis reagent by hand first to resuspend the beads.

2 - Add 100 μL of the decanted enriched sample.
 Note: shake the suspension to homogenize the culture and then allow any debris to decant before collecting the sample.
 Mix the solution by pipetting up and down until homogenized.
 Close the tubes or seal the deepwell plate with the pre-pierced sealing film.

3 - Place tubes in the Cell Disruptor for 3 min ± 1min (tubes only).

4 - Incubate tubes in the heat block at 95°C - 100°C for 10 to 15 minutes or deepwell plate in the agitator-incubator under agitation at 1,300 rpm at 95°C - 100°C for 15 to 20 minutes

5 - For tubes only, vortex at high speed, centrifuge at 10,000-12,000 g for at least 2 minutes. Centrifugation is not needed for deepwell plate.

If you choose to temporarily stop the procedure, this is the recommended stopping point.

The supernatant can be stored for up to 1 year at -20°C. Before reusing it, always allow it to thaw, homogenize, and then centrifuge tubes at 10,000-12,000 g for 5 minutes.
C. Real-time PCR

1. Instrument and software setup
For instrument and software setup, follow instructions in the real-time PCR system user guide for iQ-Check kits.

2. PCR mix preparation
2.1 Prepare a PCR mix containing the amplification solution (reagent C) and the fluorescent probes (reagent B) depending on the number of samples and controls to analyze (at least one positive and one negative control must be included in each PCR run). Use the pipetting table in Appendix to find the correct volumes to use for each reagent.

2.2 After preparation, the PCR mix (reagent B + C) must be used immediately or is stable for 1 hour maximum at 2°C - 8°C.

2.3 Pipette 45 μL of this PCR mix in each well according to your plate setup.

2.4 Add 5 μL of sample or reagent D (negative control) or reagent E (positive control). Do not vortex the sample before pipetting. Seal hermetically the wells of the plate or strips. It is important to avoid bubbles at the bottom of the wells by pipetting carefully. As an optional step, to eliminate any bubbles, centrifuge the sealed PCR plate or the PCR strips (quick spin).

2.5 Place the plate or strips in the thermal cycler. Be sure to place the plate correctly: A1 well at the upper left corner. Close the reaction module.

3. PCR Start
To start the PCR run, follow instructions in the real-time PCR system user guide for iQ-Check kits.

D. Data Analysis

Data can be analyzed directly at the end of the PCR run or at a later time by opening the stored data file. Follow instructions in the corresponding real-time PCR system user guide for iQ-Check kits for opening data files and setting the data analysis parameters.
1. Interpreting Results

Once the data analysis parameters have been set, results are interpreted by analyzing the Ct values of each sample (the cycle at which the amplification curve crosses the threshold).

It is also possible to use the software iQ-Check Analysis (cat. # 359-3135) for an automated interpretation and report generation of all data (see iQ-Check Analysis user guide). A complete automated analysis is available with the Opticon Monitor™ Software, for the Chromo4 system (see Chromo4 User Guide for iQ-Check kits, #: 93269). The CFX Manager™ IDE allows a complete automated analysis for the CFX96/CFX96 Deep Well and the Mini Opticon, #: 93893b.

1.1 Controls

Before interpreting sample results, it is necessary to verify the positive and negative controls.

For the experiment to be valid, the controls must have the following results, as summarized in the table below, otherwise the PCR reaction needs to be repeated.

<table>
<thead>
<tr>
<th>Control Type</th>
<th>Salmonella detection (FAM)</th>
<th>Internal control detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control</td>
<td>Ct = N/A*</td>
<td>28 ≤ Ct ≤ 40</td>
</tr>
<tr>
<td>Positive control</td>
<td>26 ≤ Ct ≤ 36</td>
<td>Not significant</td>
</tr>
</tbody>
</table>

* The software indicates a Ct value of N/A (not applicable) when the fluorescence of a sample does not rise significantly above the background noise, and hence does not cross the threshold.

If results of negative and positive controls differ from those in the table above, it is necessary to repeat the PCR.

1.2 Samples

A positive *Salmonella* sample must have a Ct value ≥ 10 for the FAM fluorophore.

If the Ct value is below 10, verify that as raw data the curve is a regular amplification curve (with a flat base line, followed by a rapid increase of fluorescence and then a flattening out). If the curve seems correct, it may be considered a positive *Salmonella* sample.

If there is no Ct value (Ct=N/A) for FAM, or the curve is not a typical amplification curve, the internal control for that sample must then be analyzed:
- This sample is considered as a negative *Salmonella* sample if there is no Ct value in FAM, and the internal control has a Ct ≥ 28.

- Should the internal control also not have a Ct value (Ct = N/A), this probably indicates an inhibition of the PCR reaction. The sample needs to be diluted (perform a 1/10 dilution in distilled sterile water, using 10 μL of DNA extract, then use 5 μL of the dilution for amplification), and the PCR repeated. If the sample still shows inhibition, then you can perform a new enrichment (see section A, further information).

- Should the Ct value for the internal control be < 28 it is not possible to interpret the result. Verify that the threshold was correctly placed, or that the curve as raw data is a regular amplification curve. If the curve does not have a characteristic shape, it will be necessary to repeat the PCR test.

Interpretation of sample results is summarized in the following table:

<table>
<thead>
<tr>
<th>Salmonella detection (FAM)</th>
<th>Internal control detection</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ct ≥ 10</td>
<td>Not significant</td>
<td>Positive</td>
</tr>
<tr>
<td>Ct = N/A</td>
<td>Ct ≥ 28</td>
<td>Negative</td>
</tr>
<tr>
<td>Ct = N/A</td>
<td>Ct = N/A</td>
<td>Inhibition**</td>
</tr>
</tbody>
</table>

** When both *Salmonella* and internal control detection give a Ct value = N/A, the sample must be tested again but diluted (1/10).

VIII. CONFIRMATION OF POSITIVE RESULTS

In the context of the NF VALIDATION certified method, all positive iQ-Check results need to be confirmed in one of two ways:

A. All samples but primary production samples

1. Using standard tests described in the standardized CEN or ISO methods (including the purification step). For the confirmation test, it is necessary to start from the buffered peptone water enrichment broth after the full 18 h ± 2 h enrichment at 37°C.

2. Using any other method certified NF VALIDATION and based on a principle different from that used in the iQ-Check *Salmonella* II PCR test, for example the chromogenic medium RAPID ‘*Salmonella*’. The validated protocol of this second method must be followed entirely; the confirmation is carried out from the buffered peptone water enrichment broth, if this step is common to both methods.
In the event of results that are not in agreement, between iQ-Check Salmonella II and one of the confirmation options listed above, the laboratory should follow the necessary steps to ensure the validity of their results.

It is possible to store the enriched buffered peptone water between +2°C and +8°C for 72 hours maximum, following the last incubation at 37°C.

B. Primary production sample
For environmental primary production samples, the confirmation shall be processed starting from the Primary Enrichment with following the MSRV method indicated in the appendix D of the ISO 6579/A1 standard, and using the RAPID’ Salmonella medium for the isolation.

Results that are not in agreement between iQ-Check Salmonella II and the confirmation method described above are possibly due to the presence of non motile Salmonellae. In that case, we recommend to follow the RAPID’ Salmonella method, double enrichment protocol (refer to the product technical sheet for instructions for use). This protocol includes a selective enrichment step in RVS medium.

In the scope of the NF VALIDATION certification, Primary enrichment bags can be stored until 24 hours between +2°C and +8°C before to proceed to the confirmation.

In the context of AOAC-RI validation, a positive iQ-Check Salmonella II result is considered presumptive positive and it is recommended it be confirmed according to the USDA MLG standard method (available online at http://www.fsis.usda.gov/PDF/MLG_4_03.pdf) or FDA BAM standard method (available online at: http://www.fda.gov/Food/ScienceResearch/LaboratoryMethods/BacteriologicalAnalyticalManualBAM/UCM070149.HTM).

IX. CONFIRMATION OF SINGLE COLONIES USING iQ-Check
iQ-Check Salmonella II may also be used for confirming single isolated Salmonella colonies on agar plates.

1. Pick an isolated colony, from an agar plate, selective or non-selective, with a tooth-pick or sterile loop, or other adapted consumable (e.g. pipette tip).

2. Resuspend the colony in 100 μL tryptone salt or distilled sterile water in a microfuge tube. Homogenize using a vortex.
3. Use 5 μL of the suspension with 45 μL of PCR mix (see section VII.C Real-time PCR) and follow the rest of the iQ-Check Salmonella II protocol for the data and result interpretation.

X. TEST PERFORMANCES AND VALIDATIONS
iQ-Check Salmonella II is specific for the Salmonella genus. With this kit it is possible to detect 1-10 CFU/25 g sample, according to the recommended enrichment.

NF VALIDATION

NF-VALIDATION EN ISO 16140

iQ-Check Salmonella II is certified NF VALIDATION as an alternative method to the reference method NF EN ISO 6579 (2002), for the detection of Salmonella spp. in all products for human and animal consumption, as well as environmental samples. The validation followed the protocol of the NF EN ISO 16140: 2003 standard, and includes the use of the iCycler iQ, Chromo4, iQ5, MiniOpticon, CFX96 or of CFX96 Deep Well systems. The associated software are the Opticon Monitor (V3.1 and later), the iCycler iQ Optical system software (V2.0 and later), the iQ5 Optical system software (V1.0 and later) and the CFX Manager IDE (V1.0 and later). Certificate number: BRD 07/06 – 07/04. Valid until: refer to the certificate available on the AFNOR CERTIFICATION website.

AOAC-RI VALIDATION

iQ-Check Salmonella II (Easy protocol I) is validated by AOAC-Research Institute under the Performance Tested Method Program for detection of Salmonella spp. in eggs (25g), raw ground chicken (25g and 375g), raw beef (25g), raw pork (25g), fresh spinach (25g), cantaloupe (25g), peanut butter (25g), ready-to-eat deli ham (375g), selected environmental surfaces, wet pet food (25g) and dry pet food (25g and 375g). Standard protocol II is also validated by AOAC-RI for the simultaneous detection of Salmonella spp. and E.coli O157:H7 in raw ground beef. A positive result with iQ-Check should be considered presumptive and it is recommended it be confirmed by standard reference methods. (See 3 and 4, section XI).

Certificate number: 010803.
iQ-Check Salmonella II is validated by NordVal for Standard I and Easy I protocols (in microplates), in food, feed and environment, and for Standard Protocol II and Easy II protocols (in microplates) in respectively raw meat and raw beef. Further, it was demonstrated that confirmation is not necessary.

Certificate number: 038

Valid until: refer to the certificate available on the NordVal website:
http://www.nmkl.org/NordVal/NordValMetoder.htm

XI. REFERENCES

Notice to purchaser: limited license
Use of this product is covered by one or more of the following US patents and corresponding patent claims outside the US: 5,079,352, 5,789,224, 5,618,711, 6,127,155, 5,677,152 (claims 1 to 23 only) and 5,773,258 (claims 1 and 6 only), and claims outside the US corresponding to US Patent No. 4,889,818. The purchase of this product includes a limited, non-transferable immunity from suit under the foregoing patent claims for using only this amount of product solely in Food testing, Environmental testing, and Industrial microbiology, including reporting results of purchaser’s activities for a fee or other commercial consideration, and also for the purchaser’s own research. No right under any patent claim (such as the 5’ Nuclease Process claims in US Patent Nos. 5,210,015 and 5,487,972) is conveyed expressly, by implication, or by estoppel. Further information on purchasing licenses may be obtained by contacting the Director of Licensing, Applied Biosystems, 850 Lincoln Centre Drive, Foster City, California 94404, USA.

© Bio-Rad
APPENDIX - PCR Mix Calculation Guide

To find the correct volumes to use when preparing the PCR mix, add the total number of samples and controls to be analyzed, and find the corresponding volumes of reagent B and reagent C in the table.

<table>
<thead>
<tr>
<th>Total number of samples & controls</th>
<th>Probes Reagent B (μL)</th>
<th>Amplification mix Reagent C (μL)</th>
<th>Total number of samples & controls</th>
<th>Probes Reagent B (μL)</th>
<th>Amplification mix Reagent C (μL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>40</td>
<td>49</td>
<td>265</td>
<td>2100</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>86</td>
<td>50</td>
<td>270</td>
<td>2200</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>130</td>
<td>51</td>
<td>275</td>
<td>2200</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>173</td>
<td>52</td>
<td>281</td>
<td>2200</td>
</tr>
<tr>
<td>5</td>
<td>27</td>
<td>216</td>
<td>53</td>
<td>286</td>
<td>2300</td>
</tr>
<tr>
<td>6</td>
<td>32</td>
<td>259</td>
<td>54</td>
<td>292</td>
<td>2300</td>
</tr>
<tr>
<td>7</td>
<td>38</td>
<td>302</td>
<td>55</td>
<td>297</td>
<td>2400</td>
</tr>
<tr>
<td>8</td>
<td>43</td>
<td>346</td>
<td>56</td>
<td>302</td>
<td>2400</td>
</tr>
<tr>
<td>9</td>
<td>49</td>
<td>389</td>
<td>57</td>
<td>308</td>
<td>2500</td>
</tr>
<tr>
<td>10</td>
<td>54</td>
<td>432</td>
<td>58</td>
<td>313</td>
<td>2500</td>
</tr>
<tr>
<td>11</td>
<td>59</td>
<td>475</td>
<td>59</td>
<td>319</td>
<td>2500</td>
</tr>
<tr>
<td>12</td>
<td>65</td>
<td>518</td>
<td>60</td>
<td>324</td>
<td>2600</td>
</tr>
<tr>
<td>13</td>
<td>70</td>
<td>562</td>
<td>61</td>
<td>329</td>
<td>2600</td>
</tr>
<tr>
<td>14</td>
<td>76</td>
<td>605</td>
<td>62</td>
<td>335</td>
<td>2700</td>
</tr>
<tr>
<td>15</td>
<td>81</td>
<td>648</td>
<td>63</td>
<td>340</td>
<td>2700</td>
</tr>
<tr>
<td>16</td>
<td>86</td>
<td>691</td>
<td>64</td>
<td>346</td>
<td>2800</td>
</tr>
<tr>
<td>17</td>
<td>92</td>
<td>734</td>
<td>65</td>
<td>351</td>
<td>2800</td>
</tr>
<tr>
<td>18</td>
<td>97</td>
<td>778</td>
<td>66</td>
<td>356</td>
<td>2900</td>
</tr>
<tr>
<td>19</td>
<td>103</td>
<td>821</td>
<td>67</td>
<td>362</td>
<td>2900</td>
</tr>
<tr>
<td>20</td>
<td>108</td>
<td>864</td>
<td>68</td>
<td>367</td>
<td>2900</td>
</tr>
<tr>
<td>21</td>
<td>113</td>
<td>907</td>
<td>69</td>
<td>373</td>
<td>3000</td>
</tr>
<tr>
<td>22</td>
<td>119</td>
<td>950</td>
<td>70</td>
<td>378</td>
<td>3000</td>
</tr>
<tr>
<td>23</td>
<td>124</td>
<td>994</td>
<td>71</td>
<td>383</td>
<td>3100</td>
</tr>
<tr>
<td>24</td>
<td>130</td>
<td>1000</td>
<td>72</td>
<td>389</td>
<td>3100</td>
</tr>
<tr>
<td>25</td>
<td>135</td>
<td>1100</td>
<td>73</td>
<td>394</td>
<td>3200</td>
</tr>
<tr>
<td>26</td>
<td>140</td>
<td>1100</td>
<td>74</td>
<td>400</td>
<td>3200</td>
</tr>
<tr>
<td>27</td>
<td>146</td>
<td>1200</td>
<td>75</td>
<td>405</td>
<td>3200</td>
</tr>
<tr>
<td>28</td>
<td>151</td>
<td>1200</td>
<td>76</td>
<td>410</td>
<td>3300</td>
</tr>
<tr>
<td>29</td>
<td>157</td>
<td>1300</td>
<td>77</td>
<td>416</td>
<td>3300</td>
</tr>
<tr>
<td>30</td>
<td>162</td>
<td>1300</td>
<td>78</td>
<td>421</td>
<td>3400</td>
</tr>
<tr>
<td>31</td>
<td>167</td>
<td>1300</td>
<td>79</td>
<td>427</td>
<td>3400</td>
</tr>
<tr>
<td>32</td>
<td>173</td>
<td>1400</td>
<td>80</td>
<td>432</td>
<td>3500</td>
</tr>
<tr>
<td>33</td>
<td>178</td>
<td>1400</td>
<td>81</td>
<td>437</td>
<td>3500</td>
</tr>
<tr>
<td>34</td>
<td>184</td>
<td>1500</td>
<td>82</td>
<td>443</td>
<td>3500</td>
</tr>
<tr>
<td>35</td>
<td>189</td>
<td>1500</td>
<td>83</td>
<td>448</td>
<td>3600</td>
</tr>
<tr>
<td>36</td>
<td>194</td>
<td>1600</td>
<td>84</td>
<td>454</td>
<td>3600</td>
</tr>
<tr>
<td>37</td>
<td>200</td>
<td>1600</td>
<td>85</td>
<td>459</td>
<td>3700</td>
</tr>
<tr>
<td>38</td>
<td>205</td>
<td>1600</td>
<td>86</td>
<td>464</td>
<td>3700</td>
</tr>
<tr>
<td>39</td>
<td>211</td>
<td>1700</td>
<td>87</td>
<td>470</td>
<td>3800</td>
</tr>
<tr>
<td>40</td>
<td>216</td>
<td>1700</td>
<td>88</td>
<td>475</td>
<td>3800</td>
</tr>
<tr>
<td>41</td>
<td>221</td>
<td>1800</td>
<td>89</td>
<td>481</td>
<td>3800</td>
</tr>
<tr>
<td>42</td>
<td>227</td>
<td>1800</td>
<td>90</td>
<td>486</td>
<td>3900</td>
</tr>
<tr>
<td>43</td>
<td>232</td>
<td>1900</td>
<td>91</td>
<td>491</td>
<td>3900</td>
</tr>
<tr>
<td>44</td>
<td>238</td>
<td>1900</td>
<td>92</td>
<td>497</td>
<td>4000</td>
</tr>
<tr>
<td>45</td>
<td>243</td>
<td>1900</td>
<td>93</td>
<td>502</td>
<td>4000</td>
</tr>
<tr>
<td>46</td>
<td>248</td>
<td>2000</td>
<td>94</td>
<td>508</td>
<td>4100</td>
</tr>
<tr>
<td>47</td>
<td>254</td>
<td>2000</td>
<td>95</td>
<td>513</td>
<td>4100</td>
</tr>
<tr>
<td>48</td>
<td>259</td>
<td>2100</td>
<td>96</td>
<td>518</td>
<td>4100</td>
</tr>
</tbody>
</table>
iQ-Check® Salmonella II Kit
Réf. : 357-8123

Notice d’utilisation

Test pour la détection par PCR en temps réel des salmonelles dans les produits d’alimentation humaine et animale, et les échantillons d’environnement
SOMMAIRE

I. Introduction

II. La technologie iQ-Check *Salmonella* II

III. Composition du kit

IV. Validité et conservation

V. Matériel nécessaire non fourni

VI. Précautions et recommandations

VII. Protocole
 A. Enrichissement de l’échantillon
 B. Extraction de l’ADN
 C. PCR en temps réel
 D. Analyse des données

VIII. Confirmation des résultats positifs

IX. Protocole de confirmation à partir de colonies isolées avec iQ-Check

X. Performances du test et validations

XI. Bibliographie

ANNEXE : Tableau de pipetage
I. INTRODUCTION
Les salmonelles sont toujours en tête de liste des toxi-infections alimentaires en dépit des nombreuses actions préventives menées contre elles. En France, dans 85% des cas de toxi-infections alimentaires collectives déclarées où l'agent responsable est identifié, *Salmonella* a été mis en évidence. Les ovoproduits, les produits laitiers, les viandes et volailles, sont les aliments qui le plus souvent transmettent des salmonelles (65% des cas). On a dénombré plus de 2000 sérotypes, tous potentiellement pathogènes pour l'homme. La réglementation française et européenne exige une absence de salmonelles dans 25 g d'aliments.

Face à la méthode culturale classique souvent longue et fastidieuse, la méthode iQ-Check *Salmonella* II est un test qualitatif simple et rapide permettant la détection spécifique de *Salmonella* spp. dans les produits d’alimentation humaine, animale et les échantillons d’environnement par Réaction de Polymérisation en Chaîne (PCR) en temps réel. Une séquence d’ADN spécifique du genre *Salmonella* est amplifiée et détectée simultanément grâce à une sonde fluorescente. Jusqu'à 94 échantillons peuvent être analysés avec un risque minimum de contamination et une procédure facile d’utilisation. L’utilisation de ce test est destinée au personnel de laboratoire qualifié, dans le cadre de la recherche de *Salmonella* spp. La mise en œuvre de ce test permet l’obtention d’un résultat en quelques heures après l’enrichissement d’un échantillon.

II. LA TECHNOLOGIE iQ-Check *Salmonella* II
Ce test repose sur l’amplification et la détection d'un gène par la technique de PCR en temps réel. Les réactifs PCR, prêts à l’emploi, contiennent des oligonucléotides (amorces et sondes) spécifiques de *Salmonella* spp ainsi que l’ADN polymerase et les nucléotides. La détection et l’analyse des résultats sont optimisées pour l’utilisation avec un thermocycleur pour la PCR en temps réel Bio-Rad, tel que le Chromo4™, le MiniOpticon, le CFX96™ ou le CFX96 Deep Well™.

La PCR est une technique puissante utilisée pour générer un grand nombre de copie d’un ADN cible. Pendant la réaction de PCR, la succession de cycles de chauffage et refroidissement permettent la dénaturation de l’ADN, par la chaleur, suivie de l’hybridation des amorces à la région ciblée. La Taq polymerase permet ensuite l’extension de l’ADN en utilisant ces amorces et les désoxynucléotides triphosphates (dNTPs), créant des copies de l’ADN ciblé. Ces copies sont appelées amplicons.
Pendant la PCR, des sondes spécifiques vont s’hybrider aux amplicons. Ces sondes, marquées par des fluorophores, émettent de la fluorescence uniquement quand l’hybridation a lieu. La sonde qui se lie à la séquence cible de *Salmonella* spp. est marquée par le fluorophore FAM. En l’absence de l’ADN cible, aucune fluorescence ne sera détectée. L’intensité de fluorescence augmente proportionnellement à l’augmentation de la quantité d’amplicons dans le tube de PCR. A chaque cycle PCR, lors de l’étape d’hybridation, la fluorescence est mesurée par le module optique du thermocycleur. Le logiciel associé à l’appareil calcule automatiquement la relation entre l’intensité de la fluorescence et le cycle d’amplification. Cette relation indique la présence, ou l’absence, de *Salmonella* dans l’échantillon.

Un ADN synthétique appelé “Contrôle interne” est ajouté à chaque réACTION. Il est amplifié en même temps que la séquence cible de *Salmonella*, mais est détecté par une sonde marquée avec un deuxième fluorophore. Il sert à valider tout résultat négatif.

Ce test permet la détection de *Salmonella* dans tous les produits d’alimentation humaine et animale et les échantillons d’environnement préalablement enrichis en eau peptonée tamponnée. La méthode est composée des étapes suivantes :

![Diagramme des étapes de la méthode](image)

III. COMPOSITION DU KIT

Ce kit contient la quantité de réactif nécessaire pour 96 réactions.

<table>
<thead>
<tr>
<th>Référence</th>
<th>Réactif</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Réactif de lyse</td>
<td>1 flacon (20 mL)</td>
</tr>
<tr>
<td>B</td>
<td>Sondes fluorescentes</td>
<td>1 tube (0,55 mL)</td>
</tr>
<tr>
<td>C</td>
<td>Solution d’amplification</td>
<td>1 tube (4,4 mL)</td>
</tr>
<tr>
<td>D</td>
<td>Contrôle PCR négatif</td>
<td>1 tube (0,5 mL)</td>
</tr>
<tr>
<td>E</td>
<td>Contrôle PCR positif</td>
<td>1 tube (0,25 mL)</td>
</tr>
</tbody>
</table>

IV. VALIDITÉ ET CONSERVATION

Dès réception, le kit doit être conservé entre +2°C et +8°C. Chaque réactif conservé à cette température peut être utilisé jusqu’à la date de péremption indiquée sur le tube.
V. MATÉRIEL NECESSAIRE NON FOURNI

Equipement
- **Stomacher®, homogénéiseur ou équivalent.**
- **Étuve pour l’enrichissement microbiologique des échantillons.**
- **Spécifique pour l’extraction en tube 1,5 mL**
 - Centrifugeuse de paillasse (max. 10.000 à 12.000 g).
 - Bloc chauffant (100°C ± 5°C).
- **Spécifique pour l’extraction en plaque deepwell**
 - Centrifugeuse avec rotor pour plaque 96 puits (max. 2.250 g).
 - Bloc chauffant (100°C ± 5°C).
 - ou agitateur-incubateur pour plaques deepwell, tel que le “Thermomixer” (Eppendorf).
- **Vortex.**
- **Agitateur magnétique.**
- **En option pour le protocole d’Extraction Standard II**
 - Agitateur vibrant, tel que “Disruptor Genie” (Scientific Industries).
- **Micropipettes de 20 µL, 200 µL and 1000 µL.**
- **Multi-distributeur, tel que combitips pipettes.**
- **Thermocycleur Bio-Rad pour la PCR en temps réel, tel que le Chromo4, le MiniOpticon, le CFX96 ou le CFX96 Deep Well.**

Cf. manuel utilisateur du thermocycleur Bio-Rad pour les kits iQ-Check (Chromo4, Réf. : 93269 - iQ™5 Réf. : 93270 - iCycler iQ™ Réf. : 93271 - CFX96/CFX96 Deep Well/MiniOpticon, Réf. : 93893b).

* Consulter Bio-Rad pour une information précise concernant les appareils recommandés par nos services techniques.

Remarque : Nous recommandons l’utilisation d’un onduleur électrique avec le thermocycleur.

Consommables
- **Milieu d’enrichissement : eau peptonée tamponnée (Exemple Réf. Bio-Rad: 356-4684, 500 g; 355-4179, 225 mL x 6 flacons ; 355-5789, 2.3 L x 5 poches ; 355-5790, 5 L x 2 poches).**
- **Spécifique pour les échantillons environnementaux de production primaire: supplément pour enrichissement: capsule RAPID’Salmonella, Réf. Bio-Rad : 356-4710, x100, Quantité pour 250 mL; 356-4709, x100, Quantité pour 2.5 L, 356-4712, Quantité pour 100 tests.**
• Sac à stomacher avec filtre incorporé.
• Éponges environnementales.
• Écouvillons environnementaux.
• Milieu contenant un tampon neutralisant pour les éponges et écouvillons tel que le milieu Dey-Engley (D/E).
• Spécifique pour l’extraction en tube
 - Tubes à vis coniques de 1.5 mL, stériles, (Exemple Réf. Bio-Rad: 224-0110).
• Spécifique pour l’extraction en plaque deepwell
 - Plaques deepwell 1 mL, Réf. Bio-Rad : 359-0132.
• Spécifique pour les protocoles d’extraction Standard II et Simplifié II
 - Embouts de 200 μL, à large ouverture.
• Gélose RAPID’Salmonella**, Réf Bio-Rad : 356-3961, 90 mm x 20 boîtes ; 356-3962, 90 mm x 100 boîtes ; 356-4705, 500 g.
 ** Utilisable hors du cadre de la validation AOAC-RI.
• Pour les plaques et tubes PCR, film et capuchons se reporter au manuel utilisateur du thermocyclyeur Bio-Rad pour les kits iQ-Check.
• Pipettes de 1 mL et 10 mL.
• Embouts à filtre stériles, adaptables sur les micropipettes de 20 μL, 200 μL et 1000 μL.
• Pointes pour Combitip ou multi-distributeur, stériles à emballage individuel.
• Tubes stériles de 2 mL et de 5 mL.
• Gants non poudrés.
• Eau distillée stérile.
• Eau de javel 5%.
• Agent décontaminant tel que DNA AWAY® ou RNAse AWAY®.

VI. PRECAUTIONS ET RECOMMANDATIONS
• Cet essai doit être réalisé par des personnes ayant reçu une formation adéquate.
• Les échantillons d’aliments et les cultures d’enrichissement doivent être manipulés comme des matières potentiellement infectieuses et éliminés selon les réglementations locales.
• Tous les déchets potentiellement infectieux doivent être autoclavés avant élimination.
• La qualité des résultats dépend du respect scrupuleux des Bonnes Pratiques de Laboratoire (par exemple, la norme EN ISO 7218), en particulier en matière de PCR :
 - Le matériel (pipettes, tubes etc...) ne doit pas circuler d'un poste à l'autre.
 - Il est indispensable d'utiliser un contrôle positif et un contrôle négatif pour chaque série de réactions d’amplification.
 - Ne pas utiliser les réactifs au-delà de leur date de péremption.
 - Vortexer les réactifs du kit avant leur utilisation pour travailler avec des solutions homogènes.
 - Vérifier l'exactitude et la précision des pipettes ainsi que le bon fonctionnement des instruments.
 - Changer de gants régulièrement et dès que vous soupçonnez qu'ils peuvent être contaminés.
 - Nettoyer les surfaces de travail régulièrement avec de l’eau de javel 5% et autre agent tel que DNA AWAY® ou RNase AWAY®.
 - Porter des gants non poudrés pour ne pas laisser de traces de doigts sur le film optique utilisé pour sceller les microplaques. Ne pas écrire sur les bouchons des tubes PCR. Dans les deux cas, l’enregistrement des données par l’appareil peut être perturbé.
• Il est recommandé aux utilisateurs d’être conforme aux exigences générales pour la méthode PCR décrites dans la norme EN ISO 22174 : 2005 “Microbiologie des aliments – Réaction de polymérase en chaîne (PCR) pour la recherche de micro-organismes pathogènes dans les aliments – Exigences générales et définitions”.

VII. PROTOCOLE
Nous vous recommandons vivement de lire l’ensemble du protocole avant de commencer l’essai.

Les conditions d’enrichissement sont détaillées ci-après. L’extraction d’ADN peut être effectuée selon quatre protocoles différents :
- Les protocoles Simplifié I et Simplifié II nécessitent un volume d’échantillon de 100 μL. Les protocoles Standard I et Standard II nécessitent un volume d’échantillon de 1 mL.
- Les protocoles Standard II et Simplifié II comportent une étape de broyage.
Le tableau suivant liste les différents protocoles disponibles selon le cadre de validation et l’application utilisés :

<table>
<thead>
<tr>
<th>Domaine (matrices)</th>
<th>Enrichissement</th>
<th>Extraction ADN</th>
<th>Certification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>méthode</td>
<td>format</td>
</tr>
<tr>
<td>Alimentation humaine et animale, et échantillons d'environnement (^1)</td>
<td>EPT 18h ± 2h 37°C ± 1°C</td>
<td>Standard I</td>
<td>Tube</td>
</tr>
<tr>
<td></td>
<td>EPT 21h ± 1h 37°C ± 1°C</td>
<td>Simplifié I</td>
<td>Tube Deepwell</td>
</tr>
<tr>
<td>Viandes crues</td>
<td>EPT pré-chauffée 10h ± 2h 37°C ± 1°C</td>
<td>Standard II</td>
<td>Tube Deepwell</td>
</tr>
<tr>
<td>Viande crue de bœuf (^2)</td>
<td>EPT 21h ± 1h 37°C ± 1°C</td>
<td>Simplifié II</td>
<td>Tube Deepwell</td>
</tr>
<tr>
<td>Produits carnés</td>
<td>EPT 18h ± 2h 37°C ± 1°C</td>
<td>Simplifié II</td>
<td>Tube Deepwell</td>
</tr>
<tr>
<td>Echantillons environnementaux de production primaire</td>
<td>EPT Suppl. 19h ± 1h 41.5°C ± 1°C + EPT 5h ± 1h 37°C ± 1°C</td>
<td>Simplifié I</td>
<td>Tube Deepwell</td>
</tr>
<tr>
<td>Sélection d'échantillons d'alimentation humaine et animale et, échantillons de surface</td>
<td>EPT 21h ± 1h 37°C ± 1°C</td>
<td>Simplifié I</td>
<td>Tube Deepwell</td>
</tr>
<tr>
<td>Viande crue de bœuf (^2)</td>
<td>EPT pré-chauffée 10h ± 2h 36°C ± 1°C</td>
<td>Standard II</td>
<td>Tube Deepwell</td>
</tr>
</tbody>
</table>

\(^1\) Hors échantillons d'environnement de production primaire.
\(^2\) Protocole également préconisé pour la recherche de E.coli O157:H7.
\(^3\) Pour ce protocole, le réactif de lyse utilisé est le réactif seul (sans le réactif F).

A. Enrichissement de l'échantillon

Les milieux d’enrichissement doivent être portés à température ambiante avant utilisation.

Les enrichissements de courte durée sont sensibles aux conditions d’incubation, il est nécessaire de porter les bouillons à la température d’incubation avant utilisation et de respecter scrupuleusement les conditions de température indiquées.
La durée de préparation de l’échantillon, délai entre la fin de l’étape de préchauffage du bouillon d’enrichissement et le début de la phase d’incubation de l’échantillon alimentaire, ne doit pas excéder 45 minutes. L’utilisation d’une étuve ventilée pour la phase d’incubation est recommandée.

Homogénéiser n g d’échantillon dans 9 x n mL d’eau peptonée tamponnée (par exemple 25 g dans 225 mL ; dans le cadre de la marque NF VALIDATION, respecter les normes ISO 6887-2 à 6 sur la préparation des échantillons) dans un sac à stomacher avec filtre incorporé. Dans le cadre de la validation AOAC, pour des prises d’essais de taille supérieure, homogénéiser 375g dans 1,125mL d’eau peptonée tamponnée

Remarque: dans le cadre de la marque NF VALIDATION, les prises d’essais supérieures à 25 g n’ont pas été testées.

Incuber, sans agitation, pendant les temps et aux températures indiquées dans le tableau ci-dessus.

Informations complémentaires:

1. Echantillons environnementaux de production primaire
 - Incuber l’échantillon en eau peptonée tamponnée supplémenté avec la capsule RAPID’Salmonella (cf le tableau pour les conditions d’incubation).
 - Après ce premier enrichissement, pour chaque échantillon, distribuer 900 μl d’eau peptonée tamponnée dans un tube ou dans les puits d’une plaque deepwell.
 - Transférer 100 μl de l’échantillon pré-enrichi.
 - Sceller la plaque deepwell et consulter le tableau pour les conditions d’incubation.
 - Suivre le protocole Simplifié I ou Standard II pour l’extraction d’ADN.

Remarque : l’Enrichissement Primaire peut être conservé entre +2°C et +8°C pendant 16h suivant la fin de l’incubation à 41.5°C, avant de procéder à l’Enrichissement Secondaire.

2. Protocole Standard I dit “alternatif” (pour toute matrice sauf environnement de production primaire).
Dans le cadre de la certification NF VALIDATION, dans le cas éventuel d’échantillons ayant présenté une inhibition avec une dilution au 1/10e de l’ADN extrait, il est possible d’utiliser un protocole d’enrichissement modifié pour lever cette inhibition:
 - Homogénéiser n g d’échantillon dans 9 x n mL (par exemple 25 g dans 225 mL) d’eau peptonée tamponnée.
 - Incuber sans agitation pendant 18h ± 1h à 37°C.
 - Bien agiter le sac, prélever 20 μL de la suspension et les ajouter à 1 mL d’eau peptonée tamponnée (préchauffée à 37°C).
- Incuber sans agitation pendant 4h ± 1h à 37°C.
- Suivre le protocole Standard I pour l’extraction d’ADN.

3. Analyses de surface (dans le cadre de la validation AOAC-RI)
- Pré-humidifier les écouvillons et les éponges avec le milieu Dey-Engley (DE).
- Pour les surfaces à analyser avec des écouvillons, prélever une surface de 2,54 cm x 2,54 cm (1” x 1”).
- Pour les surfaces à analyser avec des éponges, prélever une surface de 10,16 cm x 10,16 cm (4” x 4”).
- Ajouter les écouvillons ou les éponges dans le milieu d’enrichissement eau peptonnée tamponnée.

B. Extraction des acides nucléiques
Recommandations générales :
• Avant le début de l’essai, allumer le bloc chauffant pour le préchauffer et le régler à 95°C - 100°C.
• En général, éviter d’agiter le sac d’enrichissement et de prélever de gros débris. Pour les aliments présentant une couche grasse surnageante, prélever juste en dessous de cette couche.
• Ouvrir les tubes et les puits avec précaution, pour éviter les risques de contaminations croisées.
• Refroidir la plaque deepwell avant de pipeter directement à travers le film pré-percé.
• Lors du prélèvement, le réactif de lyse doit être homogénéisé à vitesse modérée au moyen du barreau magnétique contenu dans le flacon afin de maintenir le réactif de lyse en suspension.
• Pour les protocoles Standard II et Simplifié II, le réactif de lyse doit être reconstitué :
 - Verser tout le contenu du réactif F (billes de lyse) dans le flacon du réactif A (tampon de lyse).
 - Utiliser des consommables adaptés avec une large ouverture pour un prélèvement homogène du réactif de lyse reconstitué.
 - Le réactif F (billes de lyse) est inclus dans les kits iQ-Check E.coli O157:H7 ou il peut être commandé séparément.
 - Le réactif de lyse mélangé avec les billes de lyse (réactifs A + F) peut être conservé jusqu’à 6 mois à 4°C.

Protocole Standard I
1 - Introduire 1 mL d’échantillon enrichi décanté dans un tube.
2 - Centrifuger à 10.000-12.000 g pendant 5 minutes.
3 - Eliminer le surnageant.
4 - Ajouter 200 μL du réactif de lyse (réactif A) au culot obtenu.
5 - Mélanger par aspiration/refoulement avec la pipette.
6 - Vortexer à grande vitesse.
7 - Incuber le tube dans le bloc chauffant à 95°C - 100°C pendant 10 à 15 minutes.
8 - Vortexer à grande vitesse.
9 - Centrifuger à 10.000-12.000 g pendant 5 minutes.

Si vous souhaitez vous arrêter dans le protocole, cette étape est la plus appropriée.

Le surnageant peut être conservé jusqu’à un an à -20°C. Avant réutilisation, toujours laisser décongeler, homogénéiser puis centrifuger 5 minutes à 10.000-12.000 g.

Protocole Standard II (incluant une étape de broyage)
1 - Introduire 1 mL d’échantillon enrichi décanté dans un tube ou un puits d’une plaque deepwell. Sceller la plaque à l’aide d’un film plastique.
 Remarque : Agiter la suspension pour homogénéiser la culture puis de laisser décanter les débris avant de prélever l’échantillon.
2 - Pour les tubes, centrifuger à 10.000-12.000 g pendant 5 minutes puis éliminer le surnageant.
 Pour les plaques deepwell centrifuger 20 min à 2.250 g et éliminer le surnageant manuellement pour les tubes ou à l’aide du DW40.
3 - Ajouter 200 μL du réactif de lyse homogénéisé (réactifs A + F) au culot obtenu, et mélanger par aspiration/refoulement avec la pipette. Fermer les tubes ou sceller la plaque avec un film pré-percé.
 Remarque : Agiter doucement le flacon de réactif de lyse à la main afin de mettre en suspension les billes • Pour les échantillons de production primaire, utiliser le réactif A sans le réactif F.
4 - Agiter les tubes 3 min ± 1min avec l’agitateur vibrant tel que le “Disruptor Genie” ou la plaque deepwell dans dans l’agitateur-incubateur pour plaque à 1,300 rpm à 99°C.
5 - Incuber dans le bloc chauffant approprié à 95°C - 100°C pendant 10 à 15 minutes.
6 - Vortexer les tubes à grande vitesse et les centrifuger à 10.000-12.000 g pendant 5 minutes. Centrifuger les plaques deepwell à 2.250 g pendant 2 minutes.

Si vous souhaitez vous arrêter dans le protocole, cette étape est la plus appropriée.
Le surnageant peut être conservé jusqu’à un an à -20°C. Avant réutilisation, toujours laisser déconglérer, homogénéiser puis centrifuger les tubes 5 minutes à 10.000-12.000 g.

Protocole Simplifié I
1 - Répartir 100 μL de réactif de lyse A homogénéisé dans un tube ou dans un puits d’une plaque deepwell.
2 - Ajouter 100 μL d’échantillon enrichi décanté.
 Mélanger par aspiration/refoulement avec la pipette. Fermer les tubes, ou sceller la plaque avec un film pré-percé.
3 - Incuber dans le bloc chauffant approprié à 95°C - 100°C pendant 10 à 15 minutes ou dans l’agitateur-incubateur pour plaques deepwell pendant 15 à 20 minutes à 1 300 rpm.
4 - Vortexer les tubes à grande vitesse.
5 - Si vous utilisez une plaque deepwell, laisser refroidir jusqu’à température ambiante.
6 - Centrifuger les tubes au moins 2 minutes à 10.000-12.000 g. La centrifugation est inutile en plaque deepwell.

Si vous souhaitez vous arrêter dans le protocole, cette étape est la plus appropriée.
Le surnageant peut être conservé jusqu’à un an à -20°C. Avant réutilisation, toujours laisser déconglérer, homogénéiser puis centrifuger les tubes 5 minutes à 10.000-12.000 g.

Protocole Simplifié II (incluant une étape de broyage)
1 - Répartir 100 μL de réactif de lyse homogénéisé (réactifs A + F) dans des tubes ou dans les puits d'une plaque deepwell.
 Remarque : Agiter doucement le flacon de réactif de lyse à la main afin de mettre en suspension les billes.
2 - Ajouter 100 μL d’échantillon enrichi décanté.
 Remarque : agiter la suspension pour homogénéiser la culture puis de laisser décanter les débris avant de prélever l’échantillon.
 Mélanger par aspiration/refoulement avec la pipette jusqu’à homogénéisation.
 Fermer les tubes ou sceller les plaques deepwell avec un film pré-percé.
3 - Agiter 3 min ± 1 min avec l’agitateur vibrant tel que le “Disruptor Genie” (tubes uniquement).
4 - Incuber les tubes à 95°C - 100°C pendant 10 à 15 minutes dans un bloc chauffant ou la plaque deepwell dans un agitateur-incubateur pour plaques à 1.300 rpm et à 95°C - 100°C pendant 15 à 20 min.
5 - Pour tubes uniquement : vortexer à grande vitesse, centrifuger au minimum 2 minutes à 10.000 - 12.000 g. La centrifugation est inutile pour les plaques deepwell.
Si vous souhaitez vous arrêter dans le protocole, cette étape est la plus appropriée.
Le surnageant peut être conservé jusqu’à un an à -20°C. Avant réutilisation, toujours laisser décongeler, homogénéiser puis centrifuger les tubes 5 minutes à 10.000-12.000 g.

C. PCR en temps réel

1. Mise en marche appareil PCR
Pour la mise en marche et la définition des paramètres du logiciel consulter le manuel utilisateur du thermocycleur Bio-Rad pour les kits iQ-Check.

2. Préparations des réactions PCR
2.1 Préparer le mélange réactionnel PCR en mélangeant la solution d’amplification (réactif C) et les sondes fluorescentes (réactif B) en fonction du nombre d’échantillons et des contrôles à analyser (au minimum un contrôle positif et un contrôle négatif doivent être utilisés par plaque). Utiliser le tableau de pipetage en annexe pour connaître les quantités nécessaires de chaque réactif.

2.2 Après préparation, le mélange réactionnel (réactif B +C) doit être utilisé immédiatement, ou il peut être conservé pendant 1h maximum à 2°C - 8°C.

2.3 Répartir 45 μL de ce mélange réactionnel par puits, selon le plan de plaque défini.

2.4 Ajouter 5 μL d’échantillon ou de réactif D (contrôle négatif) ou de réactif E (contrôle positif). Ne pas vortexer l’échantillon avant de pipetter. Sceller de façon hermétique les puits de la plaque ou des barrettes. Il est important d’éviter la présence de bulles au fond des puits en pipetant précautionneusement. En option, pour éliminer des bulles centrifuger brièvement la plaque scellée ou les barrettes PCR.

2.5 Placer la plaque ou les barrettes PCR dans le thermocycleur. S’assurer de leur bonne orientation (puits A1 en haut à gauche). Fermer le module réactionnel.
3. Lancement de la réaction d’amplification
Pour le lancement de la PCR, consulter le manuel utilisateur du thermocycleur Bio-Rad pour les kits iQ-Check.

D. Analyse des données
L’analyse des données peut être réalisée directement à la fin de la réaction d’amplification ou ultérieurement en re-ouvrant le fichier de données. Pour ouvrir des fichiers de données et régler les paramètres d’analyse consulter le manuel utilisateur du thermocycleur Bio-Rad pour les kits iQ-Check.

1. Interprétation des résultats :
Pour obtenir les résultats de l’analyse, il suffit de lire les valeurs de Ct (cycle à partir duquel la fluorescence s’élève significativement au-dessus du bruit de fond), une fois réglés les paramètres d’analyse.

Il est également possible d’utiliser le logiciel iQ-Check Analysis (Réf. 359-3135) pour une interprétation automatisée et l’impression d’un rapport complet (Cf. notice d’utilisation de iQ-Check Analysis). Le logiciel Opticon Monitor™ permet une analyse automatisée complète pour le système Chromo4 (Cf. notice d’utilisation du Chromo4 pour les kits iQ-Check, Réf. 93269). Le logiciel CFX Manager™ IDE permet une analyse automatisée complète pour les systèmes CFX96, CFX96 Deep Well et MiniOpticon, Réf. 93893b.

1.1 Contrôles
Avant l’interprétation finale des résultats il est nécessaire de vérifier les résultats des contrôles négatifs et positifs.

Pour que le test soit valide, les résultats des contrôles négatifs et positifs doivent être les suivants:

<table>
<thead>
<tr>
<th>Contrôle négatif</th>
<th>Détection de Salmonella (FAM)</th>
<th>Détection du contrôle interne</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A*</td>
<td>Ct = N/A*</td>
<td>28 ≤ Ct ≤ 40</td>
</tr>
<tr>
<td>Contrôle positif</td>
<td>26 ≤ Ct ≤ 36</td>
<td>Non significatif</td>
</tr>
</tbody>
</table>

* N/A signifie « Not Applicable ». Le logiciel indique N/A pour le Ct d’un échantillon quand la courbe de fluorescence ne croise pas le seuil.
Si les résultats des contrôles positifs et négatifs sont différents de ceux décrits dans le tableau ci-dessus, il est nécessaire de recommencer la PCR.

1.2 Échantillons :
Un échantillon est considéré **positif** pour *Salmonella* si une valeur de Ct ≥ 10 est obtenue pour le fluorophore FAM.

Si une valeur inférieure à 10 est obtenue, vérifier que la courbe en tant que donnée brute montre un aspect caractéristique d’amplification exponentielle (ligne de base plate, puis augmentation régulière de la fluorescence, suivi par un plateau). Si la courbe observée est correcte, on peut considérer l’échantillon positif pour la présence de *Salmonella*.

Si aucune valeur n’est obtenue pour le Ct FAM (Ct = N/A), ou si la courbe observée n’est pas caractéristique, l’interprétation du résultat dépend de la valeur du contrôle interne :

- Un échantillon est considéré **négatif** pour *Salmonella* si aucune valeur de Ct n’est obtenu pour le fluorophore FAM (Ct FAM=N/A) et le Ct pour le contrôle interne est supérieur ou égale à 28.

- Une valeur N/A pour le Ct du contrôle interne indique, lorsque son Ct en FAM est également N/A, qu’un phénomène d’inhibition de la réaction de PCR a probablement eu lieu. Dans ce cas, l’échantillon d’ADN doit être dilué (réaliser une dilution au 1/10e, en eau distillée stérile en utilisant 10 μl d’extrait d’ADN, puis utiliser 5 μL de la dilution pour l’amplification), puis soumis à une nouvelle PCR. Si l’échantillon montre toujours une inhibition, vous pouvez réaliser un nouvel enrichissement (cf. section A, informations complémentaires).

- Si le Ct pour le contrôle interne est inférieure à 28 il n’est pas possible d’interpréter le résultat. Vérifier que le seuil a été correctement placé ou que la courbe brute montre un aspect caractéristique d’amplification exponentielle. Si la courbe observée n’est pas correcte il sera nécessaire de répéter le test PCR pour cet échantillon.
Interprétation des résultats obtenus sur les échantillons :

<table>
<thead>
<tr>
<th>Détection de Salmonella (FAM)</th>
<th>Détection du contrôle interne</th>
<th>Interprétation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ct ≥ 10</td>
<td>Non significatif</td>
<td>Positif</td>
</tr>
<tr>
<td>Ct = N/A</td>
<td>Ct ≥ 28</td>
<td>Négatif</td>
</tr>
<tr>
<td>Ct = N/A</td>
<td>Ct = N/A</td>
<td>Inhibition*</td>
</tr>
</tbody>
</table>

*: En cas de valeur nulle pour un échantillon et son contrôle interne (Ct = N/A), l’analyse doit être renouvelée avec l’échantillon d’ADN dilué au 1/10.

VIII. CONFIRMATION DES RÉSULTATS POSITIFS
Dans le cadre de la certification NF VALIDATION, tous les résultats positifs iQ-Check devront être confirmés de l’une des manières suivantes :

A. Tout échantillon sauf échantillon de production primaire
1. Mise en œuvre des tests classiques décrits dans les méthodes normalisées par le CEN ou l’ISO (en incluant l’étape de purification). Pour effectuer la confirmation, il faut repartir du bouillon d’enrichissement d’eau peptonée tamponnée après un enrichissement complet de 18h ± 2h, à 37°C.

2. Utilisation de toute autre méthode certifiée NF VALIDATION de principe différent de la PCR utilisée par iQ-Check Salmonella II, tel que le milieu chromogénique RAPID’Salmonella. Le protocole validé de la seconde méthode devra être respecté dans son ensemble, la confirmation s’effectuera à partir du bouillon d’eau peptonée tamponnée, cette étape étant commune aux deux méthodes.

En cas de résultats discordants entre iQ-Check Salmonella II et l’une des options de confirmation décrites ci-dessus, le laboratoire devra mettre en œuvre les moyens suffisants pour s’assurer de la validité du résultat rendu.

Il est possible de conserver le bouillon d’eau peptonée tamponnée entre +2°C et +8°C pendant 72 h maximum suivant la fin de l’incubation à 37°C.

B. Échantillons de production primaire
Pour les échantillons environnementaux de production primaire, la confirmation doit être réalisée à partir de l’Enrichissement Primaire en suivant la méthode MSRV indiquée dans l’annexe D de la norme ISO 6579/A1 en utilisant le milieu RAPID’ Salmonella pour l’isolement.
Les résultats discordants entre iQ-Check *Salmonella* II et la méthode de confirmation décrite ci-dessus peuvent être liés à la présence de *Salmonella* immobiles. Dans ce cas, nous recommandons de suivre la méthode RAPID* Salmonella*, protocole double enrichissement (se référer à la fiche technique du produit pour les conditions d'utilisation). Ce protocole comporte une étape d'enrichissement sélectif en milieu RVS.

Dans le cadre de la certification NF VALIDATION, les sacs d'Enrichissement Primaire peuvent être conservés jusque 24h entre +2°C et +8°C avant de procéder à la confirmation.

Dans le cadre de la validation AOAC-RI, un résultat positif avec iQ-Check *Salmonella* II est considéré présomptif et il est recommandé de le confirmer par la méthode de référence USDA MLG (disponible en ligne à http://www.fsis.usda.gov/PDF/MLG_4_03.pdf) ou la méthode de référence FDA BAM (disponible en ligne à : http://www.fda.gov/Food/ScienceResearch/LaboratoryMethods/BacteriologicalAnalyticalManualBAM/UCM070149.HTM), selon l'échantillon utilisé.

IX. PROTOCOLE DE CONFIRMATION A PARTIR DE COLONIES ISOLEES AVEC iQ-Check

Il est possible d'utiliser le kit iQ-Check *Salmonella* II pour la confirmation de colonies isolées sur gélose.

1. Piquer une colonie isolée, à partir d’un milieu sélectif ou non, à l’aide d’un cure-dent ou d’une öse de 1 μL, ou autre consommable adapté (cône pipette par exemple).

2. Resuspendre la colonie dans 100 μL de tryptone sel ou eau distillée stérile dans un tube de type Eppendorf. Bien homogénéiser la suspension à l’aide d’un vortex.

3. Intégrer 5 μL de la suspension dans 45 μL du mélange réactionnel PCR (Cf. partie VII.C PCR en temps réel) et suivre le reste de la méthode iQ-Check *Salmonella* II pour l’obtention et l’interprétation des résultats.
X. PERFORMANCES DU TEST ET VALIDATIONS

Le kit iQ-Check Salmonella II est spécifique pour la détection de Salmonella spp. Il est possible de détecter de 1 à 10 CFU/25 g d’échantillon selon l’enrichissement recommandé.

NF VALIDATION

iQ-Check Salmonella II est certifié NF VALIDATION comme méthode alternative à la norme de référence NF EN ISO 6579 (2002), pour la détection des Salmonella spp. pour tous produits d’alimentation humaine et animale ainsi que les échantillons d’environnement. La validation a suivi le protocole de la norme NF EN ISO 16140 :2003 et inclut l’utilisation du Chromo4, du MiniOpticon, de l’iQ5, de l’iCycler iQ, du CFX96 ou du CFX96 Deep Well. Les logiciels associés sont l’Opticon Monitor (V3.1 et suivantes), l’iCycler iQ Optical system software (V2.0 et suivantes), l’iQ5 Optical system software (V1.0 et suivantes) et le CFX Manager IDE (V1.0 et suivantes). N° d’attestation : BRD : 07/06 – 07/04. Fin de validité : se référer à l’attestation disponible sur le site web de AFNOR CERTIFICATION.

VALIDATION AOAC-RI

iQ-Check Salmonella II (protocole Simplifié I) est validé par AOAC-Research Institute selon le programme Performance Tested Method pour la détection de Salmonella spp. dans les œufs (25g), la volaille crue (25g et 375g), les viandes crues de bœuf et de porc (25g), le melon et les épinards (25g), le beurre de cacahuète (25g), la charcuterie (375g), une sélection de surfaces environnementales, les aliments humides pour animaux (25g) et les aliments déshydratés pour animaux (25g et 375g). Le protocole Standard II est aussi validé par AOAC-RI pour la détection de E.coli O157:H7 et Salmonella spp. dans le même échantillon de viande crue de bœuf. Un résultat positif avec iQ-Check est considéré présomptif et il est recommandé de confirmer le résultat par les méthodes de références. (cf. 3 et 4, partie XI.). Attestation n° 010803.
iQ-Check *Salmonella* II est validé par NordVal pour les protocoles Standard I et Simplifié I (en microplaques), pour les produits alimentaires humains, animaux, environnementaux, et pour les protocoles Standard II et Simplifié II (en microplaques), respectivement pour les viandes crues et les viandes crues de boeuf. De plus, il a été démontré que la confirmation n’était pas nécessaire. Certificat n°: 038. Fin de validité: se référer au certificat disponible sur le site web de NordVal: http://www.nmkl.org/NordVal/NordValMetoder.htm
X. BIBLIOGRAPHIE

Avis concernant l’acheteur : licence limitée

L’utilisation de ce produit est couverte par un ou plusieurs des brevets US suivants et les revendications de brevet correspondantes hors Etats-Unis : 5 079 352, 5 789 224, 5 618 711, 6 127 155, 5 677 152 (revendications 1 à 23 seulement) et 5 773 258 (revendications 1 et 6 seulement) et par les revendications hors Etats-Unis correspondant au brevet US n° 4 889 818.

L’achat de ce produit comprend une immunité de poursuite restreinte et non transférable selon les revendications de brevet précédentes lorsque cette quantité de produit est uniquement utilisée à des fins d’analyse alimentaire, d’analyse environnementale et en microbiologie industrielle, y compris la publication des résultats des activités de l’acheteur moyennant paiement ou toute autre contrepartie commerciale, et lorsqu’elle est également utilisée aux fins des propres recherches de l’acheteur. Aucun droit selon une quelconque revendication de brevet (comme les revendications de la méthode 5’-nucléase dans les brevets US n° 5 210 015 et 5 487 972) n’est expressément cédé, que ce soit par implication ou par préclusion. De plus amples informations concernant l’achat de licences peuvent être obtenues en contactant le Directeur des Licences, Applied Biosystems, 850 Lincoln Centre Drive, Foster City, Californie, 94404, Etats-Unis.
ANNEXE - Tableau de Pipetage

Utiliser ce tableau pour trouver les quantités nécessaire de réactif B et réactif C pour préparer le mélange réactionnel. Le “nombre d’échantillons” inclut les contrôles positif et négatif.

<table>
<thead>
<tr>
<th>Nombre d’échantillons</th>
<th>Sondes fluorescentes (μL)</th>
<th>Mix PCR (μL) Réactif C</th>
<th>Nombre d’échantillons</th>
<th>Sondes fluorescentes (μL)</th>
<th>Mix PCR (μL) Réactif C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>40</td>
<td>49</td>
<td>265</td>
<td>2100</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>86</td>
<td>50</td>
<td>270</td>
<td>2200</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>130</td>
<td>51</td>
<td>275</td>
<td>2200</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>173</td>
<td>52</td>
<td>281</td>
<td>2200</td>
</tr>
<tr>
<td>5</td>
<td>27</td>
<td>216</td>
<td>53</td>
<td>286</td>
<td>2300</td>
</tr>
<tr>
<td>6</td>
<td>32</td>
<td>259</td>
<td>54</td>
<td>292</td>
<td>2300</td>
</tr>
<tr>
<td>7</td>
<td>38</td>
<td>302</td>
<td>55</td>
<td>297</td>
<td>2400</td>
</tr>
<tr>
<td>8</td>
<td>43</td>
<td>346</td>
<td>56</td>
<td>302</td>
<td>2400</td>
</tr>
<tr>
<td>9</td>
<td>49</td>
<td>389</td>
<td>57</td>
<td>308</td>
<td>2500</td>
</tr>
<tr>
<td>10</td>
<td>54</td>
<td>432</td>
<td>58</td>
<td>313</td>
<td>2500</td>
</tr>
<tr>
<td>11</td>
<td>59</td>
<td>475</td>
<td>59</td>
<td>319</td>
<td>2500</td>
</tr>
<tr>
<td>12</td>
<td>65</td>
<td>518</td>
<td>60</td>
<td>324</td>
<td>2600</td>
</tr>
<tr>
<td>13</td>
<td>70</td>
<td>562</td>
<td>61</td>
<td>329</td>
<td>2600</td>
</tr>
<tr>
<td>14</td>
<td>76</td>
<td>605</td>
<td>62</td>
<td>335</td>
<td>2700</td>
</tr>
<tr>
<td>15</td>
<td>81</td>
<td>648</td>
<td>63</td>
<td>340</td>
<td>2700</td>
</tr>
<tr>
<td>16</td>
<td>86</td>
<td>691</td>
<td>64</td>
<td>346</td>
<td>2800</td>
</tr>
<tr>
<td>17</td>
<td>92</td>
<td>734</td>
<td>65</td>
<td>351</td>
<td>2800</td>
</tr>
<tr>
<td>18</td>
<td>97</td>
<td>778</td>
<td>66</td>
<td>356</td>
<td>2900</td>
</tr>
<tr>
<td>19</td>
<td>103</td>
<td>821</td>
<td>67</td>
<td>362</td>
<td>2900</td>
</tr>
<tr>
<td>20</td>
<td>108</td>
<td>864</td>
<td>68</td>
<td>367</td>
<td>2900</td>
</tr>
<tr>
<td>21</td>
<td>113</td>
<td>907</td>
<td>69</td>
<td>373</td>
<td>3000</td>
</tr>
<tr>
<td>22</td>
<td>119</td>
<td>950</td>
<td>70</td>
<td>378</td>
<td>3000</td>
</tr>
<tr>
<td>23</td>
<td>124</td>
<td>994</td>
<td>71</td>
<td>383</td>
<td>3100</td>
</tr>
<tr>
<td>24</td>
<td>130</td>
<td>1000</td>
<td>72</td>
<td>389</td>
<td>3100</td>
</tr>
<tr>
<td>25</td>
<td>135</td>
<td>1100</td>
<td>73</td>
<td>394</td>
<td>3200</td>
</tr>
<tr>
<td>26</td>
<td>140</td>
<td>1100</td>
<td>74</td>
<td>400</td>
<td>3200</td>
</tr>
<tr>
<td>27</td>
<td>146</td>
<td>1200</td>
<td>75</td>
<td>405</td>
<td>3200</td>
</tr>
<tr>
<td>28</td>
<td>151</td>
<td>1200</td>
<td>76</td>
<td>410</td>
<td>3300</td>
</tr>
<tr>
<td>29</td>
<td>157</td>
<td>1300</td>
<td>77</td>
<td>416</td>
<td>3300</td>
</tr>
<tr>
<td>30</td>
<td>162</td>
<td>1300</td>
<td>78</td>
<td>421</td>
<td>3400</td>
</tr>
<tr>
<td>31</td>
<td>167</td>
<td>1300</td>
<td>79</td>
<td>427</td>
<td>3400</td>
</tr>
<tr>
<td>32</td>
<td>173</td>
<td>1400</td>
<td>80</td>
<td>432</td>
<td>3500</td>
</tr>
<tr>
<td>33</td>
<td>178</td>
<td>1400</td>
<td>81</td>
<td>437</td>
<td>3500</td>
</tr>
<tr>
<td>34</td>
<td>184</td>
<td>1500</td>
<td>82</td>
<td>443</td>
<td>3500</td>
</tr>
<tr>
<td>35</td>
<td>189</td>
<td>1500</td>
<td>83</td>
<td>448</td>
<td>3600</td>
</tr>
<tr>
<td>36</td>
<td>194</td>
<td>1600</td>
<td>84</td>
<td>454</td>
<td>3600</td>
</tr>
<tr>
<td>37</td>
<td>200</td>
<td>1600</td>
<td>85</td>
<td>459</td>
<td>3700</td>
</tr>
<tr>
<td>38</td>
<td>205</td>
<td>1600</td>
<td>86</td>
<td>464</td>
<td>3700</td>
</tr>
<tr>
<td>39</td>
<td>211</td>
<td>1700</td>
<td>87</td>
<td>470</td>
<td>3800</td>
</tr>
<tr>
<td>40</td>
<td>216</td>
<td>1700</td>
<td>88</td>
<td>475</td>
<td>3800</td>
</tr>
<tr>
<td>41</td>
<td>221</td>
<td>1800</td>
<td>89</td>
<td>481</td>
<td>3800</td>
</tr>
<tr>
<td>42</td>
<td>227</td>
<td>1800</td>
<td>90</td>
<td>486</td>
<td>3900</td>
</tr>
<tr>
<td>43</td>
<td>232</td>
<td>1900</td>
<td>91</td>
<td>491</td>
<td>3900</td>
</tr>
<tr>
<td>44</td>
<td>238</td>
<td>1900</td>
<td>92</td>
<td>497</td>
<td>4000</td>
</tr>
<tr>
<td>45</td>
<td>243</td>
<td>1900</td>
<td>93</td>
<td>502</td>
<td>4000</td>
</tr>
<tr>
<td>46</td>
<td>248</td>
<td>2000</td>
<td>94</td>
<td>508</td>
<td>4100</td>
</tr>
<tr>
<td>47</td>
<td>254</td>
<td>2000</td>
<td>95</td>
<td>513</td>
<td>4100</td>
</tr>
<tr>
<td>48</td>
<td>259</td>
<td>2100</td>
<td>96</td>
<td>518</td>
<td>4100</td>
</tr>
</tbody>
</table>
In the United States, for technical assistance, please call (800) 4BIORAD. Select option 2 for technical support and option 2 again for the Food Science Division. To place an order, please call (800) 4BIORAD and press option 1 for customer service. Orders can also be faxed to (800) 879-2289.