

Chemical Compatibility with the NGC Chromatography System

The materials used in the NGC Chromatography System flow path have chemical compatibilities suitable for most common aqueous liquid chromatography applications. These wetted parts are also compatible with select applications that require the use of organic liquid chromatography, such as reverse phase. In addition, all wetted materials are suitable for biological purification because they have low protein binding properties, and because there is no contact with iron, including stainless steel.

Wetted Materials

All listed materials may come into contact with sample and solutions in the NGC System flow path:

- System and sample pumps: polyetheretherketone (PEEK), fluorinated ethylene propylene (FEP), ultra-high molecular weight polyethylene (UHMWPE)
- Pump heads: sapphire, ruby, ceramic
- Mixer module: PEEK, titanium, polytetrafluoroethylene (PTFE), ethylene chlorotrifluoroethylene (ECTFE)
- Buffer blending valve: PEEK, PTFE, ethylene propylene diene monomer (EPDM)
- Inlet, column switching, and outlet valves: PEEK, glass-filled PEEK
- UV flow cells: quartz, PEEK
- Conductivity flow cell: PEEK, EPDM, Viton, titanium
- Combined UV and conductivity flow cell: quartz, PEEK, PTFE, perfluoroalkoxy alkane (PFA), titanium
- pH module: glass, EPDM
- Backpressure regulator: PEEK, Tefzel, polychlorotrifluoroethylene (PCTFE), gold
- BioFrac Fraction Collector: PEEK, PTFE, Tefzel, Delrin
- NGC Fraction Collector: PEEK, EPDM, FEP

Chemicals Compatible with the NGC Chromatography System

Acids and Bases	Salts	Alcohols	Organics	Buffers	Detergents and Other
1 M acetic acid	6 M guanidine hydrochloride	100% ethanol	10% acetone	Bicine	0.1% bleach
Citric acid	Potassium chloride	40% ethylene glycol	100% acetonitrile*	Bis-Tris	β-mercaptoethanol (β-ME)
Dimethyl arsenic acid	Potassium dihydrogen orthophosphate	100% isopropanol	Diethanolamine	Bis-Tris hydrochloride	10% CHAPS
(cacodylate)	Potassium dihydrogen phosphate	100% methanol*	Ethanolamine	Bis-Tris propane	Dithiothreitol (DTT)
1% formic acid*	Potassium hydrogen phosphate		N-methyl piperazine	Glycine hydrochloride	50%
1 M hydrochloric acid*	Potassium hydrogen phthalate		N-methyl piperazine	HEPES	ethylenediaminetetraacetic
1 M nitric acid*	Potassium phosphate		dihydrochloride	MES monohydrate	acid (EDTA)
0.1 M phosphoric acid	Saline sodium citrate		Piperazine	MOPS	40% glycerol
1 M sodium hydroxide*	Sodium acetate trihydrate		Triethanolamine	PIPES	30% hydrogen peroxide
Succinic acid	Sodium bicarbonate		Triethanolamine	Sodium formate	2% lysozyme
1% trifluoroacetic acid*	10% sodium bromide		hydrochloride	Sodium HEPES	N-dodecyl-B-D-maltoside
	Sodium carbonate			Sodium MES	N-octyl-B-D-glucopyranoside
	4 M sodium chloride			Sodium TAPS	Sodium barbitone
	Sodium citrate			Sodium tetraborate	10% sodium dodecyl
	Sodium dihydrogen orthophosphate			TAPS	Suitate (SDS)
	Sodium dihydrogen phosphate			TES	phosphine (TCEP)
	Sodium hydrogen orthophosphate			Tricine	2% Triton X-100
	Sodium hydrogen phosphate			Tris base	8 M urea
	Sodium hydrogen phthalate			Tris hydrochloride	
	Sodium phosphate dibasic			Trisodium citrate	
	heptahydrate			dihydrate	
	Sodium phosphate monobasic				

* This chemical can be used with the NGC Chromatography System, but prolonged exposure (more than 2 hours) should be avoided. Thoroughly wash the flow path with water after use of this chemical and store the system in 20% ethanol.

The following chemicals can be used with the NGC Chromatography System, but prolonged exposure (more than 2 hours) should be avoided. Thoroughly wash the flow path with water after use of these chemicals and store the system in 20% ethanol. These chemicals are annotated (*) in the compatibility table.

- 100% acetonitrile
- Strong acids (≤1 M)
- Most aldehydes
- Strong bases (≤1 M)
- Select esters
- Strong oxidants

Visit bio-rad.com/NGCcompatibility for more information.

BIO-RAD is a trademark of Bio-Rad Laboratories, Inc. All trademarks used herein are the property of their respective owner. **Warning:** The following solvents will damage the NGC Chromatography System and are not recommended for use.

- Aliphatics
- Aromatic and halogenated hydrocarbons
- Most esters
- Heptaldehyde
- Ketones
- Strong oxidizing agents

For any chemical not listed in this document, check the chemical compatibility of the module materials list against published chemical compatibility tables.

Bio-Rad Laboratories, Inc.

Life Science Group
 Website
 bio-rad.com
 USA 1 800 424 6723
 Australia 61 2 9914 2800
 Australia 00 800 00 24 67 23
 Belgium
 00 800 00 24 67 23
 Brazil 4003 0399

 Canada 1 905 364 3435
 China 86 21 6169 8500
 Czech Republic 00 800 00 24 67 23
 Denmark 00 800 00 24 67 23
 Finland 00 800 00 24 67 23

 France 00 800 00 24 67 23
 Germany 00 800 00 24 67 23
 Hong Kong 852 2789 3300
 Hungary 00 800 00 24 67 23
 India 91 124 4029300
 Israel 0 3 9636050

 Italy 00 800 00 24 67 23
 Japan 81 3 6361 7000
 Korea 82 2 3473 4460
 Luxembourg 00 800 00 24 67 23
 Mexico 52 555 488 7670

 The Netherlands 00 800 00 24 67 23
 New Zealand 64 9 415 2280
 Norway 00 800 00 24 67 23
 Poland 00 800 00 24 67 23
 Portugal 00 800 00 24 67 23

 Russian Federation 00 800 00 24 67 23
 Singapore 65 6415 3188
 South Africa 00 800 00 24 67 23
 Switzerland 00 800 00 24 67 23