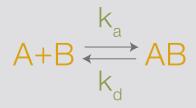


ProteOn[™] XPR36 Protein Interaction Array System

The Power of Parallel Analysis

Explore the World of Parallel Analysis with XPR36


The ProteOn XPR36 protein interaction array system is a surface plasmon resonance (SPR) biosensor platform that provides real-time label-free analysis of the specificity, affinity, and kinetics of biomolecular interactions. Using the XPR36 configuration, this system generates a 6 x 6 interaction array for the simultaneous analysis of up to six ligands with up to six analytes. The ProteOn XPR36 system increases the versatility of experiment design and the productivity of experimental workflow, enabling the completion of high-quality SPR experiments very efficiently. The parallel-flow SPR biosensor platform:

- Analyzes up to 36 different protein interactions in a single run on a single chip
- Measures a variety of experimental conditions simultaneously using parallel-flow fluidics
- Screens multiple panels of analytes
- Acquires the resonance angle shift as SPR response units (RU) for accurate kinetics
- Employs One-shot Kinetics[™] technology, which enables a complete kinetic analysis in a single run

Biomolecular Interaction in a New Light

Two biomolecules, **A** and **B**, interact with each other to form a complex **AB**. Using an SPR biosensor, besides the equilibrium constant K_p , the association rate constant k_a and the dissociation rate constant k_d can be measured, determining more details of the interaction compared to other methods.

ProteOn XPR36 System

Key Applications in Research and Discovery

Basic Research

- Identification of biomolecular interactions
- Characterization of biomolecular structures

Identification and validation of drug targets

Rapid assay design

Applied Research

Lead Optimization

- Antibody epitope binning
- Antibody epitope mappingKinetic and thermodynamic
- characterization of drug-target interactions

Preclinical/Clinical

- Serum sample analysis
- Vaccine validation
- Clinical assay design

Screening

- Monoclonal antibody screening
- Small molecule and fragment
- screeningAffinity ranking
- Off-rate screening

Process/Quality Control

- Active concentration analysis
- Quantitation and kinetics in
- 1 workflow 21 CFR Part 11 compliance

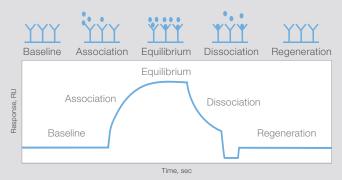
ProteOn XPR36 System Advantages

Versatility

- Flexible experimental configuration
- Efficient experimental optimization
- Kinetic, affinity, and thermodynamic analysis in 1 platform
- Compatible with crude samples
- Compatible with both qualitative and quantitative assays
- Compatible with direct and indirect binding assays

Productivity

- Analysis of 36 interactions in a single injection
- Up to 6 full kinetics measured in a single injection in 1.1 hr
- Full kinetics of 96 antibody supernatant samples in 11 hr
- Unattended running by system automation
- Batch data processing and analysis by software


High Quality

- Label-free analysis with native protein structures
- Novel referencing options for accurate kinetics and affinity
- Excellent sensitivity
- Multiple surface chemistries for optimal assay conditions
- Parallel-flow fluidics allowing for real-time comparison of multiple interactions

Biomolecular interaction analysis does not only mean measuring the binding affinity. The ProteOn XPR36 system characterizes the following aspects of a biomolecular interaction:

- How specific is the interaction?
- How fast is the interaction (k_a)?
- How stable is the complex $(\tilde{\mathbf{k}}_{d})$?
- How strong is the interaction (K_D [K_D = k_d/k_a])

The parameters are obtained from the data fitting of the association, equilibrium (optional), and dissociation phases of a sensorgram.

SPR sensorgram. – , surface; Y, ligand; •, analyte. RU, response units.

ProteOn XPR36 System Applications

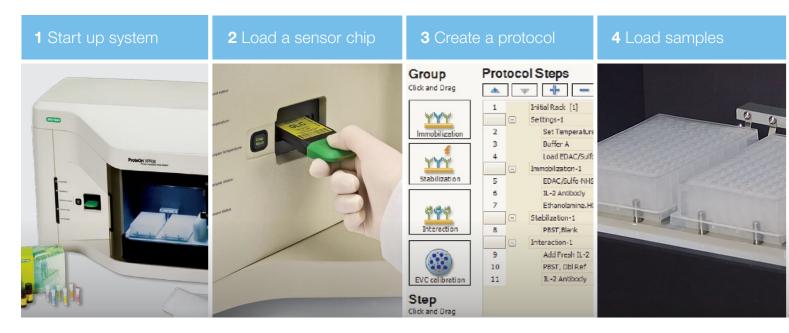
			Control Unknown samples
Antibody Characterization and Profiling Screen antibody-antigen interactions, including kinetics, epitope mapping, and epitope binning.	Drug Discovery Screening Analyze protein–small molecule interactions, such as screening compounds for drug discovery.	Protein-Protein Interactions Analyze protein-protein interactions to pinpoint structures on proteins that are responsible for binding.	Protein Quantitation and Kinetics Analyze the active concentration of a protein sample by the initial binding rate.
 Enzyme-linked immunosorbent assay (ELISA) Isothermal calorimetry (ITC) Conventional serial flow SPR 	Competitive ELISAITCConventional serial flow SPR	X-ray crystallographyITCConventional serial flow SPR	ELISABiolayer interferometryConventional serial flow SPR
 Anitbody Kinetic Screening Efficient experimental optimization Accurate kinetics Compatible with crude samples High-throughput screening Epitope Mapping/Epitope Binning Flexible experimental configurations Available for various types of assays High-throughput screening 	 High sensitivity High-throughput screening Available for fragment screening Accurate kinetics 	 Efficient experimental optimization HTG and HTE sensor chips based on tris-NTA (3 x NTA) surface chemistry for stable and regenerable capture of histidine-tagged proteins Efficient online purification process using tris-NTA (3 x NTA) or other surface chemistries for antibody screening or mutagenesis in structural biology Compatible with crude samples Accurate kinetics 	 Accurate quantitation and kinetics Wide dynamic range in quantitation High throughput for rapid sample processing

For more details, visit www.bio-rad.com/proteon/app.

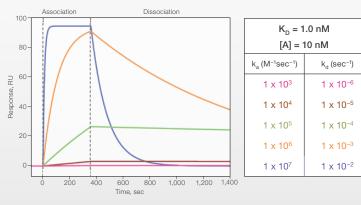
Advantages of ProteOn XPR36 System Traditional Methods Applications

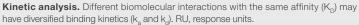
		$ \begin{array}{c} A \\ D \\ - + - N \end{array} \\ \begin{array}{c} B \\ D \\ + - \ddagger \\ N \end{array} \\ \begin{array}{c} T \\ T $	
Assay Design Discover the optimal design and experimental conditions for high-quality biological assays.	Lipid-Based Interactions Analyze interactions of lipid bilayer membranes or membrane proteins with other biomolecules using SPR.	Thermodynamics and Energetics Analyze thermodynamics to further characterize biomolecular interactions.	Cell Surface Interactions Analyze the interaction between a target and a cell, including bacterial and mammalian cells.
ELISAConventional serial flow SPR	Lipophilic surface chemistry	ITCConventional serial flow SPR	 Flow cytometry Label-free cell morphology sensing Quartz crystal microbalance Conventional serial flow SPR
 Rapid label-free screening for assay components and conditions Rapid epitope binning for designing sandwich immunoassays Versatile assay configurations Multiple surface chemistries for different types of assays Unattended running for assay validation 	 ProteOn liposome capturing kit based on hydrophilic surface chemistry using DNA hybridization Hydrophilic surface chemistry for easy regeneration and high performance when capturing lipid assemblies ProteOn GLC lipid kit based on traditional lipophilic surface chemistry using alkyl modification; provides customized surface lipophilicity for optimal performance Real-time referencing for reliable experimental results 	 Highly efficient thermodynamic analysis workflow for structural biology Experimental repeats in a single run for accurate thermodynamics and energetics 	 Rapid label-free assays Efficient experimental optimization Flow channels compatible with cell samples to avoid clogging in the system

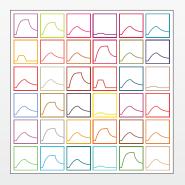
SPR-the Key Technology for Biomolecular Interaction Analysis


Interaction between biomolecules is of great interest in biological research. Understanding the whole set of biomolecular interactions in a cell, known as an interactome, lays the foundation of molecular and cell biology. There are different technologies available for biomolecular interaction analysis, which can be categorized as real-time analysis and end-point analysis.

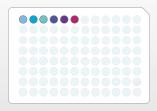
- Real-time analysis technologies provide a complete time trace and kinetics of a biomolecular interaction
- End-point analysis technologies provide a readout after a biomolecular interaction takes place


A. Slow Off-Rate Biomolecular Interaction **B. Fast Off-Rate Biomolecular Interaction** 200 200 ColP Western Blot CoIP Western Blot 160 160 R ß 120 -120 Response, 80 80 Protein Protein 2 otein 1 40 40 (analyte (analyte) (ligand) 300 400 500 600 700 100 200 300 400 500 600 700 800 100 200 800 Time, sec

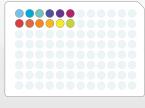

Real-time vs. end-point analysis. SPR technology analyzes all types of biomolecular interactions, including those with slow and fast off-rates. **A**, slow off-rate biomolecular interactions, which typically occur with strong binding affinity, can be measured by both SPR and end-point analysis methods, such as coimmunoprecipitation (CoIP)–western blot. In addition, SPR provides kinetics for further characterization. **B**, fast off-rate biomolecular interactions, which typically occur with weak binding affinity, can also be measured by SPR. However, these interactions are difficult to measure or even detect using end-point analysis methods because of their dissociation in rinsing steps. RU, response units.


Workflow Using the ProteOn XPR36 System for an SPR Experiment

SPR, as a key technology in this field providing real-time biomolecular interaction analysis in a label-free manner, offers unique benefits that are not available with other technologies.



SPR technology is amenable to high-throughput platforms. The ProteOn XPR36 system features a 6 x 6 interaction array available for high-throughput applications.


ProteOn XPR36 Protein Interaction Array System

SPR-based biosensors determine binding kinetics of protein-protein interactions by measuring refractive index changes on an optical surface. The ProteOn XPR36 system is a parallel-flow SPR biosensor platform featuring 36 interaction spots on a 6 x 6 array.

Apply up to 6 unique target molecules, such as mutant or wild-type proteins

Evaluate binding against 6 analytes, such as small inhibitor molecules

Benefits of 6 x 6 Array

Versatility – Multiple Experimental Configurations and Fast Qualitative and Quantitative Assays

Kinetic Characterization (1-to-1)

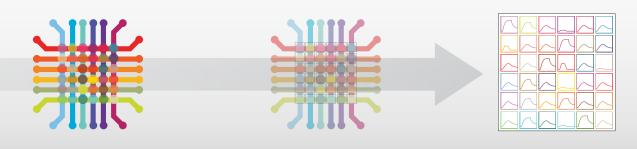
In kinetic characterization experiments, the optimization of experimental protocols is usually the most labor-intensive and time-consuming step. Probing at one time six ligand immobilization conditions together with six analyte injection conditions, the ProteOn XPR36 system allows for full optimization in a single run. This ensures the optimal experimental conditions for the interaction between the ligand and the analyte. The method of using a single run of 6 x 6 injections for a complete kinetic analysis is called One-shot Kinetics.

Kinetic Screening (6-to-1)

In kinetic screening experiments, each of the six ligand channels gives a full kinetic analysis in a single run. This high throughput enables fast processing of a large number of samples while accurate kinetics is maintained. The ProteOn XPR36 system provides the best balance between throughput and accuracy of kinetic screening.

Multiplex Screening (6-to-6) and Array Screening (36-to-1)

In multiplex or array screening experiments, the 6 x 6 interaction array of the ProteOn XPR36 system is fully utilized for high throughput, which enables multiplex or 36-ligand screening. 6 different targets



6 different analytes

Productivity – Fast Protocol Optimization and High Throughput

Kinetic Characterization

- ProteOn XPR36 system: 1.1 hr, 6 full kinetics (36 data points, surface regeneration not required)
- Conventional serial flow SPR system: 3.5 hr, 3 full kinetics (18 data points, surface regeneration required)

Kinetic Screening

Captured Ligand Screening (for mAb supernatants)

- ProteOn XPR36 system: 11 hr, 96 full kinetics (576 data points)
- Conventional serial flow SPR system: 65 hr, 96 full kinetics (576 data points)

Analyte Screening

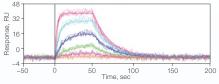
- ProteOn XPR36 system: 25 hr, 96 x 6 full kinetics (3,456 data points)
- Conventional serial flow SPR system: 5.7 days, 96 x 3 full kinetics (1,728 data points)


Multiplex Screening

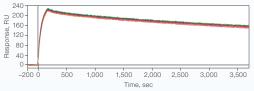
- ProteOn XPR36 system: 0.7 hr, 6 x 6 binning matrix (36 data points)
- Conventional serial flow SPR system: 2.5 hr, 3 x 6 binning matrix (18 data points)

Array Screening

- ProteOn XPR36 system: 12 hr, 36 x 36 binning matrix (1,296 data points)
- Conventional serial flow SPR system: no equivalent


Sensor chip surface

Four Factors for High-Quality SPR Results

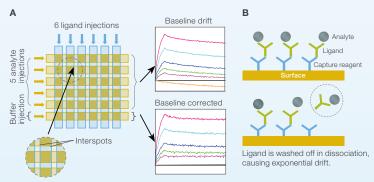

1 SPR System

Sufficient Signal to Noise Ratio

ProteOn XPR36 system signal-to-noise ratio. ProteOn XPR36 system noise is 1 RU and ~2 RU after double referencing. SPR responses over three times signal-to-noise ratio (3 x SNR) are detectable. RU, response units.

Instrument Stability

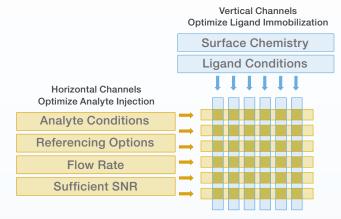
Evaluation of k_d **value reproducibility using the ProteOn One-shot Kinetics kit.** 2 systems x 3 chips x 6 ligand channels x 6 analyte channels = 216 sensorgrams. CV = 6.1% (over 2 systems and 6 sensor chips). RU, response units.



Data Referencing

The key step in data processing is data referencing. Data referencing corrects for the artifacts in SPR experimental results.

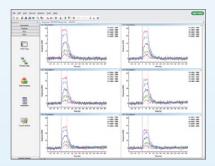
The ProteOn XPR36 system has two novel advantageous referencing modes that no other SPR system provides: an interspot reference to correct for refractive index change (bulk effect) and nonspecific binding, and a real-time injection reference to correct for baseline drift resulting from the changes of the ligand surface.


Note: For additional information about the referencing options in the ProteOn XPR36 system, watch **www.bio-rad.com/proteon/reference**.

Novel ProteOn XPR36 system references. The ProteOn XPR36 system provides **A**, an interspot blank surface reference to save interaction spots and provide immediate approximate referencing and **B**, a real-time injection reference to correct the exponential baseline drift when using ligand-capture surface chemistry.

2 Experiment Design

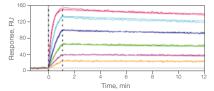
XPR36 Configuration Optimizes Multiple Factors Simultaneously


Optimal experimental conditions are obtained in a single run.

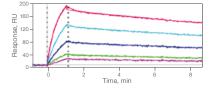
Software Advantages

ProteOn Manager[™] software is a comprehensive, user-friendly tool for the analysis of biomolecular interactions.

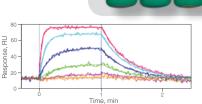
- Ease of use
- Integration of data acquisition, data processing, and data analysis
- Powerful graphic user interface
- Intuitive protocol writing interface
- Fast and accurate data processing
- Accurate fitting with 8 models
- Rapid data analysis
- Concise analysis reports
- Export functions for further data processing in Excel or other software



ProteOn Manager software data analysis window.


Surface Chemistries

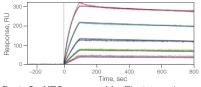
Direct Coupling of Targets


The ProteOn GLC, GLM, and GLH sensor chips are designed for direct coupling of proteins and petides, offering compact, medium, and high surface capacity levels, respectively.

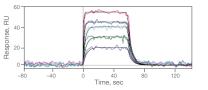
ProteOn GLC sensor chip. The interaction analysis between cytokine IL2 and an anti-IL2 antibody was achieved using the compact-capacity GLC chip. RU, response units.

ProteOn GLM sensor chip. The interaction analysis between a TEM1 β -lactamase mutant and the β -lactamase inhibitor protein (BLIP) was achieved using the medium-capacity GLM chip. RU, response units.

ProteOn GLH sensor chip. The interaction analysis between carbonic anhydrase II and an inhibitor carboxybenzenesulfonamide (MW 201) was achieved using the high-capacity GLH chip. RU, response units.

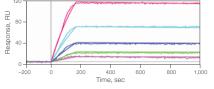

Capturing of Targets

The ProteOn NLC sensor chip is designed for site-specific capturing of biotinylated biomolecules. ProteOn HTG and HTE sensor chips are designed for site-specific capturing of histidine-tagged proteins.



2000-DPI 180-100-0 2 4 Time, sc 100-1 1 10-

ProteOn NLC sensor chip. The interaction analysis between an antibody Fab fragment and biotinylated MHC I/Tyr was achieved using the NLC chip. RU, response units.


ProteOn HTG sensor chip. The interaction analysis between histidine-tagged protein A and human IgG was achieved using the HTG chip, showing its capability to resolve high-affinity kinetics requiring long dissociation time. RU, response units.

ProteOn HTE sensor chip. The interaction analysis between histidine-tagged ERK2 (a MAP kinase) and the inhibitor purvalanol B (MW 433) was achieved using the HTE chip, showing its capability to screen small molecules. RU, response units.

Capturing of Lipid Assemblies

The ProteOn LCP sensor chip together with the ProteOn LCP capturing reagent kit, and the ProteOn GLC sensor chip together with the ProteOn lipid modification kit are designed for capturing lipid assemblies for the analysis of lipid-bilayer membranes or membrane proteins.

Pr of the second second

ProteOn LCP sensor chip. The interaction analysis between FITC-labeled DSPC liposomes captured on the LCP sensor chip and an anti-FITC antibody was achieved using the LCP chip. RU, response units.

Specifications		Catalog #	Description
Hardware		Sensor Chips	
Number of interaction spots	36	176-5011	ProteOn GLC Sensor Chip, for general amine coupling, compact
Experiment temperature range	15-40°C		polymer matrix layer with binding capacity of approximately
Dynamic range	1–40,000 RU absolute for all types of sensor		1 protein monolayer
	chips, regardless of surface chemistry	176-5012	ProteOn GLM Sensor Chip, for general amine coupling, polymer
Uniformity of response	>98% (CV <2%)		matrix layer with intermediate binding capacity
Baseline drift	<1 RU/min	176-5013	ProteOn GLH Sensor Chip, for general amine coupling, polymer
Baseline noise	<1 RU		matrix layer with highest binding capacity
Sample flow rate	25–200 μl/min	176-5021	ProteOn NLC Sensor Chip, for binding of biotinylated molecules,
Sample flow rate uniformity in			contains NeutrAvidin immobilized to GLC layer
6 parallel channels	>99% (CV <1%)	176-5031	ProteOn HTG Sensor Chip, for capturing histidine-tagged proteins,
Autosampler	Temperature-controlled sample rack for		polymer matrix layer contains tris-NTA complexes with compact
	72 x 2 ml sample vials or two 96-well plates		binding capacity
Syringe pumps	6 sample and 6 buffer syringes with each	176-5033	ProteOn HTE Sensor Chip, for capturing histidine-tagged proteins,
	set operated in unison for uniform and		polymer matrix layer contains tris-NTA complexes with higher
	stable flow rate		binding capacity
Sensor chip detection	Automatic bar code recognition of	176-5041	ProteOn LCP Sensor Chip, for capturing lipid assemblies such as
	sensor chip type, expiration date,		liposomes, for use with ProteOn LCP capturing reagent kit
	and previous experiment	Sensor Chip	Application Kits
		176-2300	ProteOn Liposome Capturing Kit, includes 1 ProteOn LCP sensor
Software		110 2000	chip, 1 ProteOn LCP capturing reagent kit, and ProteOn lipid
PC operating system	Windows XP or Windows 7		modification conditioning solution
Program	ProteOn Manager software	176-2350	ProteOn GLC Lipid Kit, includes 1 ProteOn GLC sensor chip and
Data-fitting models	Langmuir, Langmuir off-rate analysis,	110 2000	1 ProteOn lipid modification kit
	Langmuir with mass transfer, heterogeneous	176-2500	ProteOn HTG Capturing Kit, includes 1 ProteOn HTG sensor chip
	analyte, bivalent analyte, heterogeneous	110 2000	and 1 ProteOn HTG and HTE reagent kit
	ligand, two states, Langmuir with drift	176-2600	ProteOn HTE Capturing Kit, includes 1 ProteOn HTE sensor chip
GXP (optional)	21 CFR Part 11; IQ/OQ software tools	110 2000	and 1 ProteOn HTG and HTE reagent kit
Typical Working Ranges		Reagent Kits 176-2110	ProtoOn Immobilization Buffer Kit includes 1 such addium
Molecular mass detection limit	Typically >95 Da	176-2110	ProteOn Immobilization Buffer Kit, includes 1 each sodium
Sample concentration	Typically >10 pM	170 0010	acetate buffer (pH 4.0, 4.5, 5.0, 5.5)
Association rate constant (k _a)	Typically 3 x 10 ³ –3 x 10 ⁶ M ⁻¹ sec ⁻¹	176-2210	ProteOn Regeneration and Conditioning Kit, includes 1
Dissociation rate constant (k _d)	Typically 1 x 10^{-6} – 6 x 10^{-1} sec ⁻¹		each glycine buffer (pH 1.5, 2.0, 2.5, 3.0), and NaOH, SDS, HCl,
Equilibrium constant (K _D)	Typically 2 x 10 ⁻⁴ -1 x 10 ⁻¹² M	170 0010	phosphoric acid, NaCl; 50 ml solution each
		176-2310	ProteOn LCP Capturing Reagent Kit, for capturing lipid
Ordering Information		170,0000	assemblies such as liposomes, for use with ProteOn LCP sensor chip
0		176-2360	ProteOn Lipid Modification Kit, includes ProteOn lipid modification
Catalog # Description		170 0410	conditioning solution and ProteOn lipid modification solution
ProteOn XPR36 System and Sof	tware	176-2410	ProteOn Amine Coupling Kit, includes EDAC (EDC), sulfo-NHS,
-	Protein Interaction Array System, 100–240 V,	170 0510	and ethanolamine HCI
		176-2510	ProteOn HTG and HTE Reagent Kit, includes reagents for

ProteOn XPR36 instrument, 2 licensed copies of ProteOn Manager software, controller and display, communication cable, sample rack, rack needle set, microplate needle set, collection tank,

Excel and Windows are trademarks of Microsoft Corporation. HASP is a trademark of Aladdin Knowledge Systems, Ltd. NeutrAvidin is a trademark of Thermo Fisher Scientific Inc. Tween is a trademark of ICI Americas Inc.

The ProteOn XPR36 protein interaction array system is covered by Bio-Rad patents, including United States patent numbers 8,111,400, 8,105,845, 7,999,942, and 7,443,507.

This product or portions thereof is manufactured and sold under license from GE Healthcare under United States patent numbers 5,492,840, 5,554,541, 5,965,456, 7,736,587, and 8,021,626, and any international patents and patent applications claiming priority.

BIO RAD

176-0200

176-0210

Bio-Rad Laboratories, Inc.

choice of 2 sensor chips, One-shot Kinetics kit, maintenance kit,

2 bottles of PBS/Tween running buffer, chip normalization solution,

100 sample vials, 25 microplates with standard wells, 50 sheets of

ProteOn Manager Software, 1-user license, includes 1 HASP key

ProteOn Manager Software, Security Edition, allows U.S. FDA 21

CFR Part 11 compliance, 1-user license, includes 1 HASP key

microplate sealing film, instruction manual

Life Science Group Web site www.bio-rad.com USA 800 424 6723 Australia 61 2 9914 2800 Austria 01 877 89 01 Belgium 09 385 55 11 Brazil 55 11 5044 5699 Canada 905 364 3435 China 86 21 6169 8500 Czech Republic 420 241 430 532 Denmark 44 52 10 00 Finland 09 804 22 00 France 01 47 95 59 65 Germany 089 31 884 0 Greece 30 210 9532 220 Hong Kong 852 2789 3300 Hungary 361 459 6100 India 91 124 4029300 Israel 03 963 6050 Italy 39 02 216091 Japan 03 6361 7000 Korea 82 2 3473 4460 Mexico 52 555 488 7670 The Netherlands 0318 540666 New Zealand 64 9 415 2280 Norway 23 38 41 30 Poland 48 22 331 99 99 Portugal 351 21 472 7700 Russia 7 495 721 14 04 Singapore 65 6415 3188 South Africa 27 861 246 723 Spain 34 91 590 5200 Sweden 08 555 12700 Switzerland 026 674 55 05 Taiwan 886 2 2578 7189 Thailand 800 88 22 88 United Kingdom 020 8328 2000