



Model 680

Microplate Reader

# **Instruction Manual**

Catalog Numbers 168-1000 168-1001 168-1002 168-1003



# **Warranty Statement**

This warranty may vary outside of the continental United States. Contact your local Bio-Rad office for exact terms of your warranty.

Bio-Rad Laboratories warrants to the customer that the Model 680 Microplate Reader (catalog number 168-1000, 168-1001, 168-1002, and 168-1003) will be free from defects in material and workmanship, and will meet all performance specification for period of one year from the date of shipment. This warranty covers all parts and labor.

In the event that the instrument must be returned to the factory for repair under warranty, the instrument must be packed for return in original packaging.

Bio-Rad shall not be liable for any incidental, special, or consequential loss, damage, or expense directly or indirectly arising from the use of the Model 680 Microplate Reader. Bio-Rad makes no warranty whatsoever in regard to products or parts furnished by third parties, such being subject to the warranty of their respective manufacturers. Service under this warranty shall be requested by contacting your nearest Bio-Rad office.

The following items are considered Customer-installable consumables: thermal printer paper and light bulbs. These parts are not covered by this warranty. All customer-installed parts are warranted only to be free from defects in workmanship. This warranty does not extend to any instrument or parts thereof that have been subject to misuse, neglect, or accident, or that have been modified by anyone other than Bio-Rad or that have been used in violation of Bio-Rad instructions.

The foregoing obligation are in lieu of all other obligations and liabilities including negligence and all warranties, of merchantability, fitness for a particular purpose or otherwise, expressed or implied in fact or by law, and state Bio-Rad's entire and exclusive liability and buyer's exclusive remedy for any claims or damages in connection with the furnishing of goods or parts, their design, suitability for use, installation or operation. Bio-Rad will in no event be liable for any special, incidental or consequential damages whatsoever, and Bio-Rad's liability under no circumstances will exceed the contract price for the goods for which liability is claimed.

# **Regulatory Notices**

# **Electro Magnetic Compatibility:**

This instrument is designed to meet the Class-A emissions and immunity levels of the EN61326 product family standard for the CE mark. This rating requires that it only be used in a laboratory environment.

**Note:** This instrument has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his/her own expense.

# Safety:

This instrument is designed to meet EN61010-1 requirements for the CE mark, which are internationally accepted safety standards for electrical equipment for measurement, control and laboratory use. EN61010-1 applies to equipment which is used under the following conditions;

Indoor use

Altitude up to 2,000 m

MAINS supply voltage fluctuations up to ±10%

This instrument has been tested, and its compliance has been confirmed under the following environmental conditions;

Overvoltage category II

Pollution degree 2

If the instrument is used in a manner not specified in this manual, the protection provided by the instrument may be impaired. This instrument should not be modified or altered in any way. Alteration of this instrument will result in the following:

Void the manufacture's warranty.

Void regulatory compliance.

Create a potential safety hazard.

**Protective Ground:** This instrument has detachable, three-wire power cord for connection to both the power source and protective ground. The protective ground contact is connected to the accessible metal parts of the instrument. To prevent electrical shock, always use a power source outlet that has a properly grounded protective-ground contact.

# **Table of Contents**

| Section 1  | Introduction                                             | 1  |
|------------|----------------------------------------------------------|----|
| 1.1 Des    | cription and accessories for Model 680 Microplate Reader | 2  |
|            | Product Description                                      |    |
|            | tents of Shipping Carton                                 |    |
|            | rnal Features                                            |    |
| 2.3 Mer    | nbrane Keypad                                            | 5  |
|            | Instrument Set-up                                        |    |
| 3.1 Initia | al Start-up                                              | 6  |
|            | Operation                                                |    |
|            | ument Overview                                           |    |
| _          | ctions Overview                                          | 10 |
| 4.2.1      | Calculations                                             |    |
| 4.2.2      | Security password                                        |    |
| 4.2.3      | Memory Back-up                                           |    |
| 4.2.4      | Limits                                                   |    |
| 4.2.5      | Reports                                                  |    |
| 4.2.6      | RS-232C Interface                                        |    |
| 4.2.7      | Printer                                                  |    |
|            | iled Operation                                           |    |
| 4.3.1.     | Initial Start-up                                         |    |
| 4.3.2.     | Configuring the system                                   |    |
| 4.3.3.     | Printing Reports and Protocol information                |    |
| 4.3.4.     | Memory Recall operation                                  |    |
| 4.3.5.     | Editing Kinetic protocol                                 |    |
| 4.3.6.     | Checkmark value setting (by Administrator only)          |    |
| 4.3.7.     | Editing End Point Protocol                               |    |
| 4.3.8.     | Cutoff setting procedure                                 |    |
| 4.3.9.     | Standard setting procedure                               |    |
| 4.3.10.    | Mode setting procedure                                   |    |
| 4.3.11.    | Plate Map setting procedure                              |    |
|            | ck Guide – Reading a plate                               |    |
| 4.5 Lan    | guage choice                                             | 40 |
|            | Instrument service by the user                           |    |
|            | alling Interference Filters                              |    |
|            | nging the Lamp                                           |    |
|            | Troubleshooting and Error Messages                       |    |
|            | Specifications                                           |    |
|            | rument Specifications                                    |    |
|            | face Specifications                                      |    |
|            | nmand Language for Model 680 Microplate Reader           |    |
| 7.3.1      | Command Language for Remote control mode                 |    |
| 7.3.2      | Error Codes                                              | 63 |

# Section 1. Introduction

The Model 680 Microplate Reader is an eight-channel, vertical pathlength photometer that measures the absorbance of the contents in the wells of a 96-well microtitration plates. It can perform single or dual wavelength measurements and can report absorbance values to three decimal places.

The Model 680 reader can be programmed by entering commands through the membrane keypad to define plate reading and data analysis parameters as testing protocols and select report types. Hard copy reports can be produced by an optional on-board thermal printer or external printer.

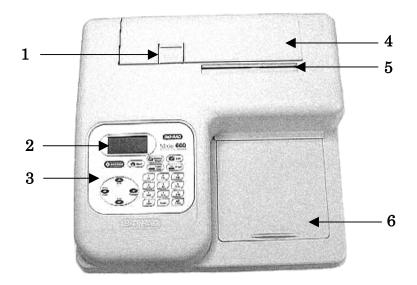
The Model 680 reader can also be controlled by the Windows' based Microplate Manager software (catalog number 170-9520) program, through its built-in RS232C serial interface device. Microplate Manager software program provides a complete, user-friendly package for protocol programming as well as data analysis, for all absorbance microplate readers from Bio-Rad Laboratories.

# 1.1 Description and accessories for Model 680 Microplate Reader

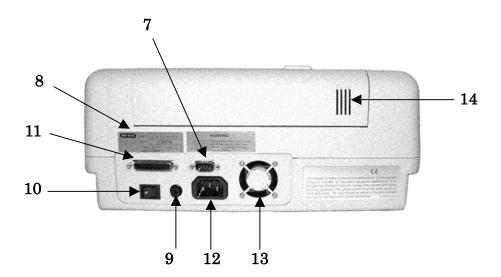
| Catalog Number                   | Description                                                                                                                  |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| 168-1000<br>168-1001<br>168-1002 | Model 680 microplate reader  Model 680 microplate reader with temperature control                                            |
| 168-1003                         | Model 680 microplate reader with internal printer  Model 680 microplate reader with temperature control and internal printer |
| 168-1011                         | 405 nm filter                                                                                                                |
| 168-1013                         | 415 nm filter                                                                                                                |
| 168-1020                         | 450 nm filter                                                                                                                |
| 168-1028                         | 490 nm filter                                                                                                                |
| 168-1038                         | 540 nm filter                                                                                                                |
| 168-1040                         | 550 nm filter                                                                                                                |
| 168-1044                         | 570 nm filter                                                                                                                |
| 168-1049                         | 595 nm filter                                                                                                                |
| 168-1056                         | 630 nm filter                                                                                                                |
| 168-1061                         | 655 nm filter                                                                                                                |
| 168-1080                         | 750 nm filter                                                                                                                |
| 168-1005                         | Serial PC Cable                                                                                                              |
| 168-1006                         | Replacement lamp for Model 680 microplate reader                                                                             |
| 168-1007                         | Printer paper, 2 rolls                                                                                                       |

Custom filters between 400 and 750 nm may be ordered, corresponding catalog numbers can be found on  ${\it www.bio-rad.com}$ , or you can order by specifying the wavelength and the model number of the reader.

# **Section 2. Product Description**


# 2.1 Contents of Shipping Carton

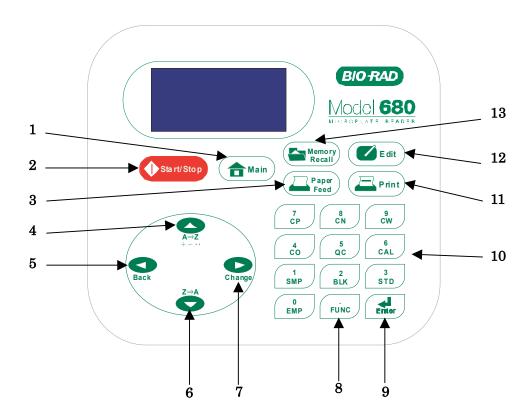
The shipping carton contains the following items:


- Model 680 Microplate Reader, with 415nm, 450nm, 490nm and 655nm interference filters installed on the filter wheel.
- Power cord
- Serial PC Cable
- Spare fuse
- Dust cover
- Instruction manual
- Warranty card
- One roll of thermal printer paper (for units equipped with internal printer)

Inspect the exterior of the instrument for any signs of shipping damage. Contact your local Bio-Rad representative if any of these items are damaged or missing.

# 2.2 External Features




- 1. Release latch for rear cover
- 2. Liquid crystal display (LCD)
- 3. Membrane keypad
- 4. Rear cover
- 5. Printer slot (when optional built-in printer is installed)
- 6. Reading chamber door



- 7. RS-232C serial interface
- 8. Serial number Label
- 9. Fuse
- 10. Power switch

- 11. Printer port (only when optional built-in printer is not installed)
- 12. Power cord receptacle
- 13. Cooling Fan
- 14. Cooling Vents

# 2.3 Membrane Keypad



**1. Main** Returns to MAIN SCREEN.

**2. Start/Stop** Initiates plate reading using current active protocol.

Stops plate reading and printing.

**3. Paper Feed** Advances paper strip in internal printer.

4. Up Arrow Moves the cursor upward. Selects the alphabet or the symbol.5. Left Arrow Returns to the previous screen. Moves the cursor to the left.

6. Down Arrow Moves the cursor downward. Selects the alphabet or the symbol.7. Right Arrow Moves the cursor to the right. Changes or selects the value and type.

**8. Dot/Function** Inputs the dot. Changes the input mode.

**9. Enter** Completes or seals a field entry.

**10. Ten Keys** Inputs numbers or well type in plate mapping.

0 / EMP: Empty 5 / QC: QC control
1 / SMP: Sample 6 / CAL: Calibrator
2 / BLK: Blank 7 / CP: Positive Control
3 / STD: Standard 8 / CN: Negative Control
4 / CO: Cutoff control 9 / CW: Weak Positive Control

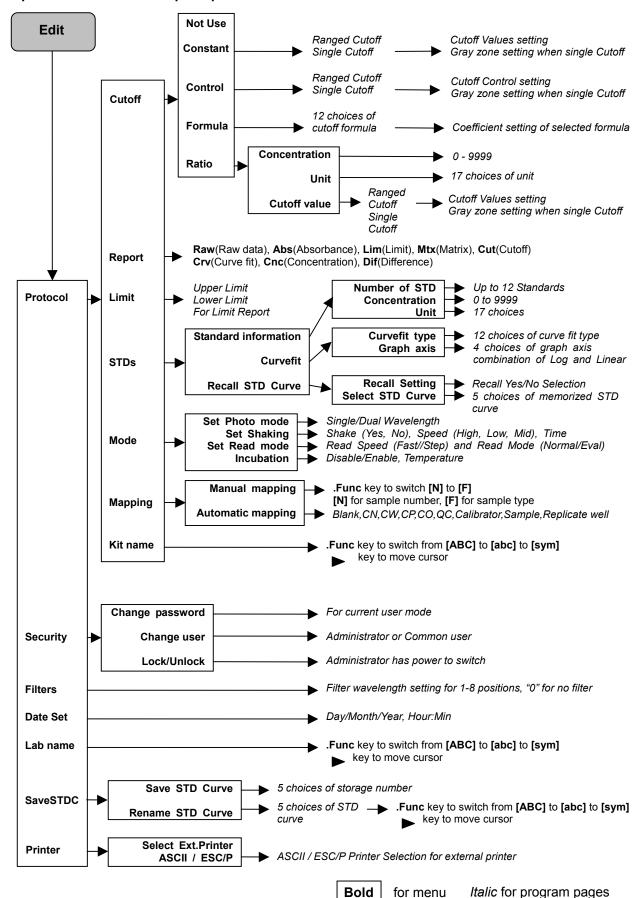
11. Print Prints out the plate data and protocol information.12. Edit Enter the Edit Menu, and set up the instrument.

**13. Memory Recall** Read out protocol and plate data.

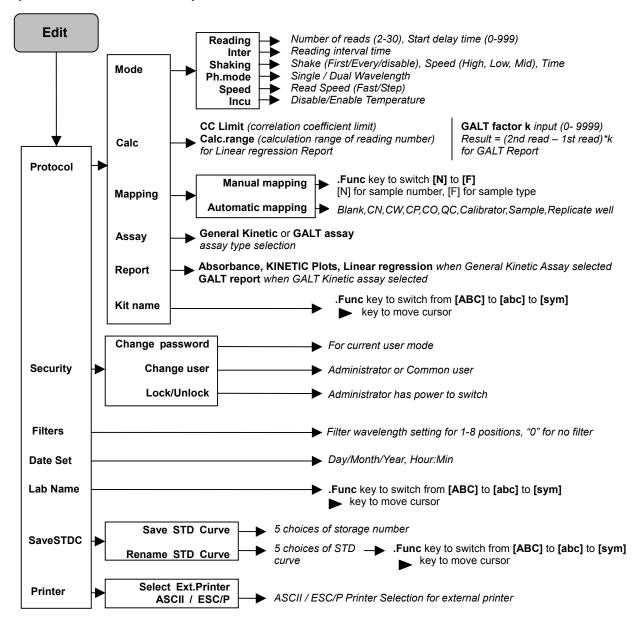
# Section 3. Instrument Set-up

# 3.1 Initial Start-up

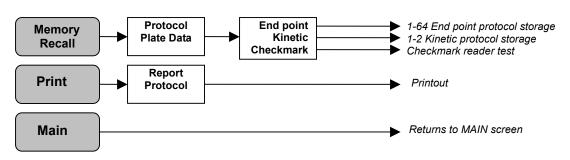
- Place the instrument on a clean, sturdy table or bench. It is important to keep the instrument in a clean, relatively dust free environment to ensure optimal performance.
- Connect the power cord to the back of the instrument. Before connecting the instrument to the main electrical supply, check that the AC voltage is appropriate for the instrument.
- Turn on the power switch on the rear panel. The LCD will display the version number of the on-board firmware. After about three seconds, the instrument will perform an initial self-diagnosis that requires about fifteen seconds. The Login Screen will now be displayed for you to choose your user level (administrator or common user), and enter the password (Initial password: 00000). Please allow three minutes for the instrument to warm up (reach thermal equilibrium) before reading plates.
- Install the printer paper (if the optional internal printer is installed). The thermal printer paper is treated on one side only and must be properly installed for the printer to function. The side of the paper that faces out from the roll is the treated side.
  - a. Open the rear cover of the instrument.
  - b. Tear off a small piece at the beginning of a new roll at an angle to form a point.
  - c. Place the roll of paper in the small pan-like holder positioned below the printer. The roll should be positioned so that it will feed from the bottom.
  - d. While pressing the PAPER FEED key, feed the pointed end of the paper into the paper feed slot in the underside of the printer until the printer grabs the paper and feeds it through the slot in the top of the instrument.
  - e. Securely close the rear compartment.


# Section 4. Operation

# 4.1 Instrument Overview


The Model 680 Microplate Reader has built-in software that allows the user to set the plate reading and data analysis conditions as a protocol data, read a microplate under the defined reading conditions, and get the printout reports from the internal or external printer. The software communicates through the 4-line, 20-character LCD and is controlled through the instrument's membrane keypad.

The display shows the current mode of the on-board software. The software has three different protocol types: End-point analysis, Kinetic analysis, and the Checkmark validation protocols. The user presses the Memory Recall key to select analysis mode passing through the choice of the protocol or the collected data.


#### Operation flow when End point protocol selected



#### Operation flow when Kinetic protocol selected



### **Special Buttons**



**Bold** for menu *Italic* for program pages

## 4.2 Functions Overview

### 4.2.1 Calculations

The Microplate Reader uses Beer's Law to calculate the absorbance value of each well. Beer's Law states that absorbance is equal to the log10 of the ratio of the baseline measurement intensity (Io) to the sample measurement intensity (I).

Beer's Law

Absorbance = Log10 (Io/I)

Before measuring the plate, the reader takes a reading for all eight photodiode channels. These values are recorded as the baseline measurement (Io) values for each channel, respectively. The reader then records the sample measurement (I) value for each well, and calculates the absorbance using these values. Channel-to-channel error is significantly reduced because the lo value for a given channel is used only in determining the absorbance of the wells of that channel.

# 4.2.2 Security password

The Model 680 Microplate Reader requires user login with password. This security feature helps to prevent any unwarranted modifications to the analysis conditions/protocols and data stored in the instrument, and identifies operator on reports. The reader has two user settings, the Administrator and the Common user. Each user level has its own security password.

# 4.2.3 Memory Back-up

The battery back-up provides memory even after the reader is turned off.

The following information will be saved in the memory until new reading parameters are set by the user or a new plate is read by the instrument. Note that if a run is aborted before it is finished, all the previous plate reading data remain in memory and none of the data from the aborted reading is stored.

- 1. 10 latest plate reading result for End-point protocol
- 2. 2 latest sets of Kinetic plate reading result (Max 30 series of readings for each Kinetic)
- 3. 64 End-point Protocol settings and 2 Kinetic Protocol settings
- A set of Checkmark reference data and one latest set of Checkmark reading result
- 5. 5 set of Standard curve data for the storage of standard curves and graphs
- 6. 8 wavelength values for filters
- 7. Laboratory name
- 8. Two security passwords (for the Administrator and the Common user)
- 9. External printer type (ASCII or ESC/P type)

In addition to the battery back-up memory, the instrument has a small amount of none volatile memory to keep the system information after the battery is dead. The Serial Number is stored

in this memory.

The first time the instrument is turned on, or after a battery failure, the following default information will be held in the memory.

- 1. Both of Administrator and Common user security password are set to "00000".
- 2. Laboratory name is "Bio-Rad Laboratories".
- 3. All wavelength values of the filters are set to "---" nm.
- 4. The date and time of the calendar chip are set to 1 day, 1 month, 00 year, 0 hour and 0 minute.
- 5. None of plate reading data is available.
- 6. End-point protocol is chosen and the protocol number is set to #1.
- 7. None of Standard curve data for the storage of standard curves and graphs is available.
- 8. External printer type is set to ASCII type.

#### 4.2.4 Limits

The Microplate Reader displays absorbance readings with absolute values as 3.500. Out-of-range absorbance values, i.e. those with absolute values greater than 3.500, are displayed as either "\*.\*\*\*" or "-\*.\*\*\*". For example, if the absorbance is 4.500, then the display will read "\*.\*\*\*", and if the absorbance is -4.500, the display will read "-\*.\*\*\*".

# 4.2.5 Reports

The Microplate Reader can generate nine types of reports for End-point protocol: Raw data, Absorbance, Limit, Matrix, Cutoff, Curve fit, Concentration, Difference, and TeSeE Screening report. And four types of Kinetic protocol can be generated by the reader: Absorbance, Kinetic Plots, Linear regression, and GALT report.

# **Reports of End-point Protocol**

# (1) Raw data report

The Raw data report is the uncorrected absorbance values (without blank subtraction). In single-wavelength mode, the reported value is the measured absorbance. In dual-wavelength mode, the reported value is the difference between the uncorrected readings taken with the measurement filter and with the reference filter.

# (2) Absorbance report

The Absorbance report is the blank-corrected absorbance values. The mean absorbance value of all of the wells designated as assay blanks is calculated and then subtracted from all 96 values of the raw data set to produce the Absorbance report.

Blank mean = X/nS.D. =  $[{X^2 - n^*(Blank mean)^2}/{n-1}]^1/2$ Where: S.D. = Standard deviation X = Sum total of the raw absorbance for each blank  $X^2 = Sum total of the squared raw absorbance for each blank$ n = Number of blanks

# (3) Limit report

The Limit report provides a qualitative YES/NO report. Wells with blank-subtracted absorbance values between the upper and lower limits are represented with an asterisk (\*), wells with absorbance values below the lower limit by minus signs (-), and wells with absorbance values greater than the upper limit by positive signs (+).

# (4) Matrix report

The Matrix report provides a qualitative report of the relative magnitude of the absorbance values on the plate. The absorbance range defined by the upper and lower limits is divided into 10 equal partitions, numbered 0 through 9. The blank-subtracted absorbance value of each well is classified according to the partition of the matrix to which it corresponds, and is reported as a signal digit. Wells with absorbance values greater than the upper limit are reported by plus signs (+), and wells with absorbance values less than the lower limit by minus signs (-).

# (5) Cutoff report

The Cutoff report provides a qualitative report of the relative magnitude of the absorbance values or converted concentrations on the plate. Four types of cutoff report are supported as listed below.

# a. Cutoff Constant Ranged Cutoff Constant

The user inputs Positive and Negative values to be used as the cutoff.

For units designated "Abs", if the absorbance of a well is within the positive and negative cutoff values, the well is scored "\*". If the absorbance of a well is greater than the positive value, the well is scored "+", and if the absorbance of a well is below the negative value, the well is scored "-".

For units not designated "Abs", the absorbance value of each well is converted to the concentration value using the curve fit constants of the curve fit report. If the concentration of a well is within the positive and negative cutoff values, the well is scored "\*". If the concentration of a well is greater than the positive value, the well is scored "+", and if the concentration of a well is below the negative value, the well is scored "-".

# **Single Cutoff Constant**

The user inputs Positive and Gray zone values to be used as the cutoff. For units designated "Abs", if the absorbance of a well is within the gray zone value of the positive cutoff value, the well is scored "\*". If the absorbance of a well is more than the gray zone value and greater than the positive value, the well is scored "+", and if the absorbance of a well is more than the gray zone value below the positive value, the well is scored "-".

```
Upper cutoff absorbance = Positive absorbance + ((Gray zone/100) * Positive absorbance)
Lower cutoff absorbance = Positive absorbance - ((Gray zone/100) * Positive absorbance)
```

For units not designated "Abs", the absorbance value of each well is converted to the concentration value using the curve fit constants of the curve fit report. If the concentration of a well is within the gray zone value of the positive cutoff value, the well is scored "\*". If the concentration of a well is more than the gray zone value greater than the positive value, the well is scored "+", and if the concentration of a well is more than the gray zone value below the positive value, the well is scored "-".

```
Upper cutoff conc. = Conc. of positive controls + ((Gray zone/100) * Conc. of positive controls) Lower cutoff conc. = Conc. of positive controls - ((Gray zone/100) * Conc. of positive controls)
```

### b. Cutoff Control

# Ranged Cutoff Control

The mean absorbance values of the Positive and Negative wells defined in the plate map are used for the cutoff.

The absorbance range of the Positive and Negative is divided into 10 equal partitions, numbered 0 through 9. The absorbance value of each well is classified according to the partition of the matrix to which it corresponds, and is reported as a signal digit. Wells with absorbance values greater than the Positive are reported by plus signs (+), and wells with absorbance values less than the Negative by minus signs (-).

# **Single Cutoff Control**

The mean absorbance value of the Negative wells that defined in the plate map and the gray zone value that is entered by the user are used to the cutoff. The upper and lower cutoff values are:

```
Upper cutoff absorbance = Mean of negative controls + ((Gray zone/100) * Mean of negative controls) Lower cutoff absorbance = Mean of negative controls – ((Gray zone/100) * Mean of negative controls)
```

The absorbance range of the upper and lower cutoff is divided into 10 equal partitions, numbered 0 through 9. The absorbance value of each well is classified according to the partition of the matrix to which it corresponds, and is reported as a signal digit. Wells with absorbance values greater than the upper cutoff are reported by plus signs (+), and wells with absorbance values less than the lower cutoff by minus signs (-).

#### c. Cutoff Formula

The mean absorbance values of the Positive and Negative wells defined in the plate map are used for the cutoff formula calculation.

The 12 types of formula supported are:

```
i.
     k * CNx
                             k + CNx
                        ۷ij.
ii.
     k * CPx
                       viii. k + CPx
     k * COx
iii.
                             k + COx
                       ix.
iv.
     CNx/k
                       Χ.
                             k*CNx + CPx
     CPx/k
                       xi.
                             (CNx + CPx) / k
V.
     COx/k
                             k1*CNx + k2*CPx
vi.
                       xii.
```

The result absorbance value of the formula calculation and the gray zone value that is entered by the user are used for the cutoff. The upper and lower cutoff values are:

```
Upper cutoff absorbance = Result of a Formula + ((Gray zone/100) * Result of a Formula) Lower cutoff absorbance = Result of a Formula - ((Gray zone/100) * Result of a Formula)
```

The absorbance range of the upper and lower cutoff is divided into 10 equal partitions, numbered 0 through 9. The absorbance value of each well is classified according to the partition of the matrix to which it corresponds and is reported as a signal digit. Wells with absorbance values greater than the upper cutoff are reported by plus signs (+), and wells with absorbance values less than the lower cutoff by minus signs (-).

### d. Cutoff Ratio

The mean absorbance value of the Calibrator wells defined in the plate map and the concentration value entered by the user are used for the cutoff ratio. Before the cutoff, the absorbance value of each well is converted into the concentration value. The ratio of Concentration/Absorbance of Calibrator is applied to the conversion. Then, the cutoff is done with the defined Positive and Negative or the defined Positive and Gray zone values.

# Ranged Cutoff Control

The concentration range of the Positive and Negative is divided into 10 equal partitions, numbered 0 through 9. The concentration value of each well is classified according to the partition of the matrix to which it corresponds, and is reported as a signal digit. Wells with concentration greater than the Positive are reported by plus signs (+), and wells with concentration less than the Negative by minus signs (-).

# Single Cutoff Control

The concentration value of the Negative and the gray zone value entered by the user are used for the cutoff. The upper and lower cutoff values are:

```
Upper cutoff concentration = Positive + ((Gray zone/100) * Positive)
Lower cutoff concentration = Positive - ((Gray zone/100) * Positive)
```

The concentration range of the upper and lower cutoff is divided into 10 equal partitions, numbered 0 through 9. The concentration value of each well is classified according to the partition of the matrix to which it corresponds, and is reported as a signal digit. Wells with concentrations greater than the upper cutoff are reported by plus signs (+), and wells with concentrations less than the lower cutoff by minus signs (-).

# (6) Curve fit report

The Curve fit report provides a regression analysis based on the absorbance values of a series of standards. There are ten types of curve fits supported with the onboard software on Model 680 microplate readers:

- i. 5P Logistic Rodbard
- ii. 4P Logistic Rodbard
- iii. 5P Logistic Cook-Wilkenson
- iv. 4P Logistic Cook-Wilkenson
- v. 5P Exponential
- vi. Sigmoid Logistic
- vii. Linear regression
- viii. Quadratic regression
- ix. Cubic spline
- x. Point To Point regression

The onboard software calculates the best fit of the defined curve between each set of two consecutive data points in the standard curve of absorbance vs. concentration. And then it generates the report with the coefficients of regression, the correlation coefficient, and the standard error.

For readers with the optional internal printer or with an external ESC/P printer which accepts ESC/P code, a graph of the standard curve may be generated when selected in the report parameter.

# (7) Concentration report

In case of the curve fit, the Concentration report also provides the regression analysis. After the calculation of the curve fit, it calculates the concentrations values of the samples, and generates the report.

In case of the cutoff constant with the unit not designated "Abs" and in case of the cutoff ratio, the reader generates the list of concentration of each well.

# (8) Difference report

The Difference report is the subtraction report between the neighboring columns or row.

# (9) TeSeE Screening report

Analysis of the TeSeE screening assay results can be done with two pre-programmed protocols: "TeSeE" protocol is stored in Endpoint Protocol position #5 and "TeSeE eq" is stored in Endpoint Protocol position #6 as factory default setting. Both protocols are locked.

TeSeE screening report is generated only if these protocols are selected as current active protocol. Plate is first validated according to negative and positive controls validation criteria; samples are then compared to the calculated cut-off.

Criteria for plate validation are set as follow:

Criteria #1: Individual Negative Control must be < 0.150

Number of valid Negative Control must be >= 3

Criteria #2: Individual Negative Control must be < 1.400 \* Negative Control average

Number of valid Negative Control must be >= 2

Criteria #3: Positive Control average must be >= 1.000

Cutoff is calculated as follow:

#### TeSeE:

Positive cutoff = Negative Control average + 0.210

Negative cutoff = (Negative Control average + 0.210) \* 0.900

# TeSeE eq:

Positive cutoff = Negative Control average + 0.210

Negative cutoff = Negative Control average + 0.090

Samples are interpreted as follow:

"POS": Positive when sample OD >= Positive cutoff
"NEG": Negative when sample OD < Negative cutoff

"???": Gray zone: NEG cutoff =< sample OD < POS cutoff

# **Reports of Kinetic Protocol**

# (1) Absorbance report

The Kinetic Absorbance report is the series of absorbance data in the kinetic sequence.

# (2) Kinetic Plots

The Kinetic plots are the absorbance plots of each well in the plate. It is available for readers with the optional internal printer or with an external ESC/P printer which accepts ESC/P code.

# (3) Linear Regression report

The Linear Regression report provides the calculation of Kinetic reaction rate for each well using the linear regression.

# (4) GALT report

The GALT report calculates the following formula for each well between two readings of a plate.

GALT = (R2 - R1) \* k

Where: R1 = Absorbance value of 1st reading

R2 = Absorbance value of 2nd reading

k = GALT factor

### 4.2.6 RS-232C Interface

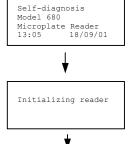
The Model 680 Microplate Reader has a built-in bi-directional RS-232C interface (9 pin D-sub connector, Bio-Rad catalog number: 168-1005). This allows external computers to control the instrument. When an external computer is in control of the microplate reader, the printer and the membrane keys, except for the "Start/Stop" key, are automatically deactivated and the LCD display as below.

Remote mode

The reader will remain in remote control mode until it receives "RL" command from the host computer or until the "Start/Stop" key on the microplate reader is pressed.

# 4.2.7 Printer

The Model 680 Microplate Reader has a built-in printer interface connector (25 pin D-sub) or an optional factory built-in printer.


The printer interface connector allows the user to connect an external printer for the printout of reports or protocol. This external printer interface is based upon Centronics interface standards.

Two types of printer, ASCII type and ESC/P type, are allowable to connect. The ASCII type printer can only accept ASCII character based codes which does not include any graphic codes. Next, the ESC/P type printer can accept ESC/P codes which include graphic codes.

The optional factory built-in internal printer and the external ESC/P type printer can generate all types of report including graphs and kinetic plots.

# 4.3 Detailed Operation

### 4.3.1. Initial Start-up



#### Self-Diagnosis

This screen will appear upon power-up and during self-diagnosis. Date and Time shall also be indicated on this screen.

#### Initialization

After self-diagnosis, the system shall initialize all the hardware.

# Login SCREEN



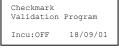
## **Security Check**

The system requires input of Password to confirm that the user is the authorized operator.

Pressing the **Change/Right arrow** key will switch the user mode between Common user and Administrator.

Password for both Common user and Administrator is set as "00000" initially upon factory shipment.

Operator can change the password in the EDIT menu. See Security later.


#### **MAIN SCREEN**

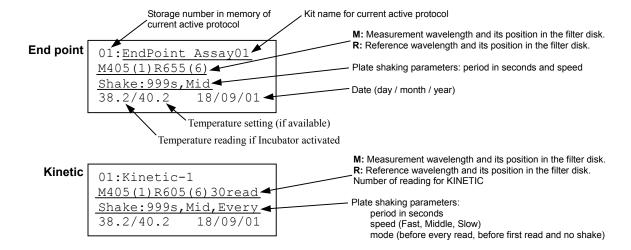
01:EndPoint Assay01 M405(1)R655(6) Shake:999s,Mid 38.2/40.2 18/09/01

### End point mode

01:Kinetic-1 M405(1)R605(6)30read Shake:999s,Mid,Every 38.2/40.2 18/09/01

### Kinetic mode

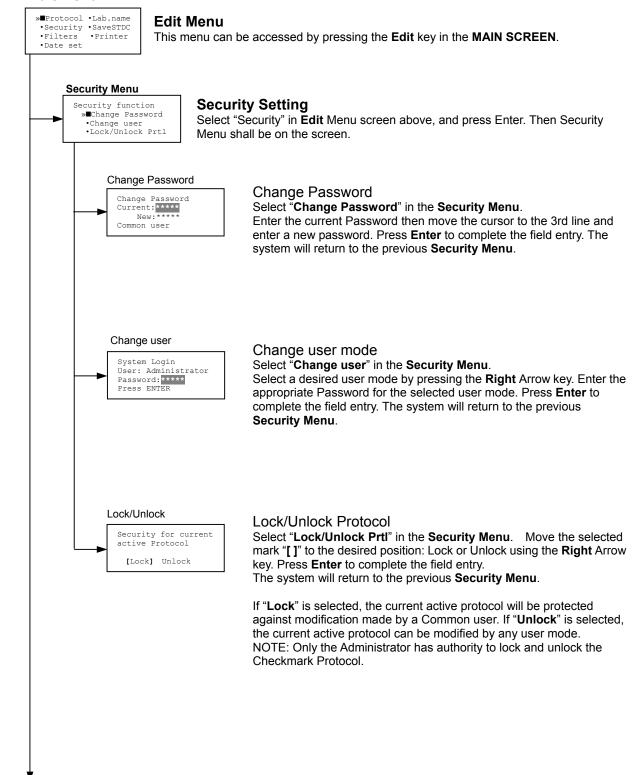


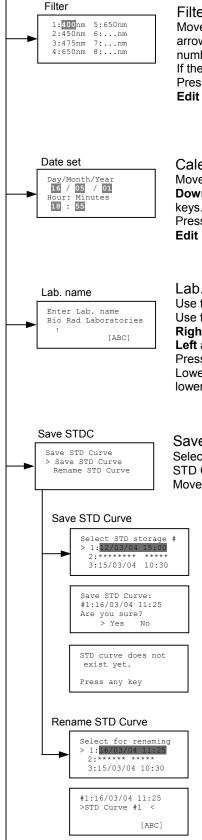

# System Ready

When this **MAIN** screen is on the LCD, **Start/Stop** key is activated for microplate reading. Pressing **Start/Stop** key will begin reading according to the setting of the current active protocol.

There are three kind of **MAIN** screen depending on the active protocol type: Endpoint, Kinetic, and Checkmark program.

Four arrow keys, Numeral keys, Main key and Enter key are inactive. Start/Stop, Memory Recall, Edit, Print and Paper Feed keys are active.


## Checkmark mode




# 4.3.2. Configuring the system

Note: To return to the previous screen, use the back/left arrow key.

#### **Edit Menu**





#### Filter setting

Move the cursor to the desired position and using the **Up**, **Down**, and **Right** arrow keys. Enter the filter wavelength on the selected position using the number keys.

If the selected position of the filter disk is empty, enter three "...".

Press **Enter** to complete the field entry. The system will return to the previous **Edit Menu** screen.

### Calendar setting

Move the cursor to the desirable position for date or time input by using the **Up**, **Down**, and **Right** arrow keys. Enter the present date or time using number keys.

Press **Enter** to complete the field entry. The system will return to the previous **Edit Menu** screen.

### Lab. name setting

Use the **Up** and **Down** arrow keys to select from "A" to "Z" and symbol. Use the **Number** keys for numeric input.

Right arrow key to move the cursor to the right.

**Left** arrow key to slip out of the screen and it returns to the **Edit Menu** screen. Pressing "./FUNC" key will change the character mode: Upper case alphabet, Lower case alphabet, and symbol. Current character mode is indicated on the lower right corner of the LCD.

# Save STDC setting

Select "Save STDC" in Edit Menu screen above, and press **Enter.** Then Save STD Curve Menu shall be appeared on the screen.

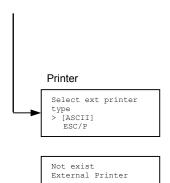
Move the cursor to the desired position by using the  ${\bf Up}$  and  ${\bf Down}$  arrow keys.

#### Save STD Curve

To save a STD Curve, you should select the storage number between #1 and #5. The **Up** and **Down** arrow keys are used to move the cursor to the desired storage number. And press **Enter** to complete the selection. After the storage number selection, "**Are you sure?**" message is appeared. Select "**Yes**" or "**No**" and press **Enter**. In case of "**Yes**", the reader saves the STD Curve and returns to the **Edit Menu** screen.

If the curve fit calculation has not done or it has not finished successfully, an error message will be appeared and saving STD Curve will be invalidated.

#### Rename STD Curve


To change a name of STD Curve, you should select the storage number between #1 and #5. The **Up** and **Down** arrow keys are used to move the cursor to the desired storage number. And press **Enter** to complete the selection.

Use the **Up** and **Down** arrow keys to select from "A" to "Z" and symbol. Use the **Number** keys for numeric input.

**Right** arrow key to move the cursor to the right.

**Left** arrow key to slip out of the screen and it returns to the **Edit Menu** screen.

Pressing "./FUNC" key will change the character mode: Upper case alphabet , Lower case alphabet , and symbol. Current character mode is indicated on the lower right corner of the LCD.



Press any key

### **External Printer setting**

Select "Printer" in Edit Menu screen above, and press **Enter.**Then, Select ext printer type menu shall be appeared on the screen.
The **Up** and **Down** arrow keys are used to move the cursor to the desired printer; "**ASCII**" type or "**ESC/P**" type. Pressing **Enter** accepts the setting and the reader returns to the **Edit Menu** screen.

"ASCII" type :Text printer
"ESC/P" type :Graphic printer

If the external printer is not connected, an error message, "Not exist External Printer" will be appeared.

The reader will be returned to the **Edit Menu** screen by pressing any key.

# 4.3.3. Printing Reports and Protocol information

#### **PRINT MENU**



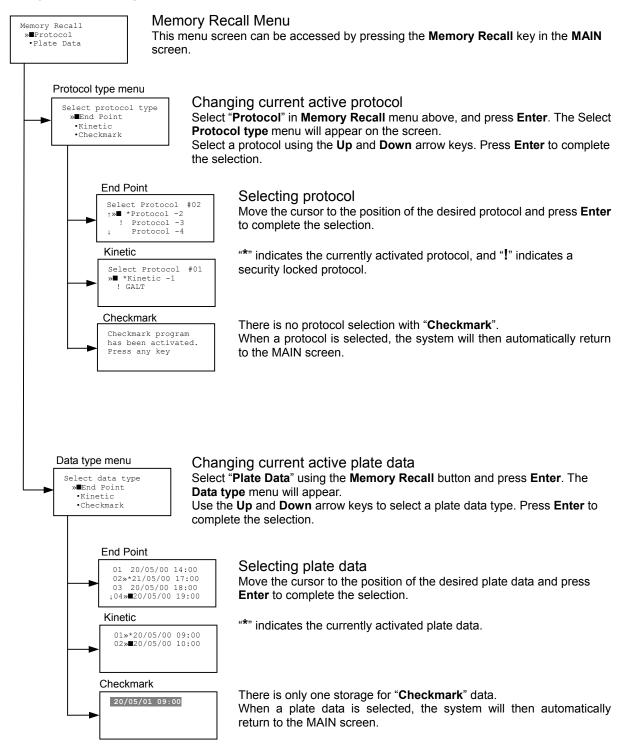
#### **Print Menu**

This menu screen can be accessed by pressing the **Print** key in the **MAIN** screen.

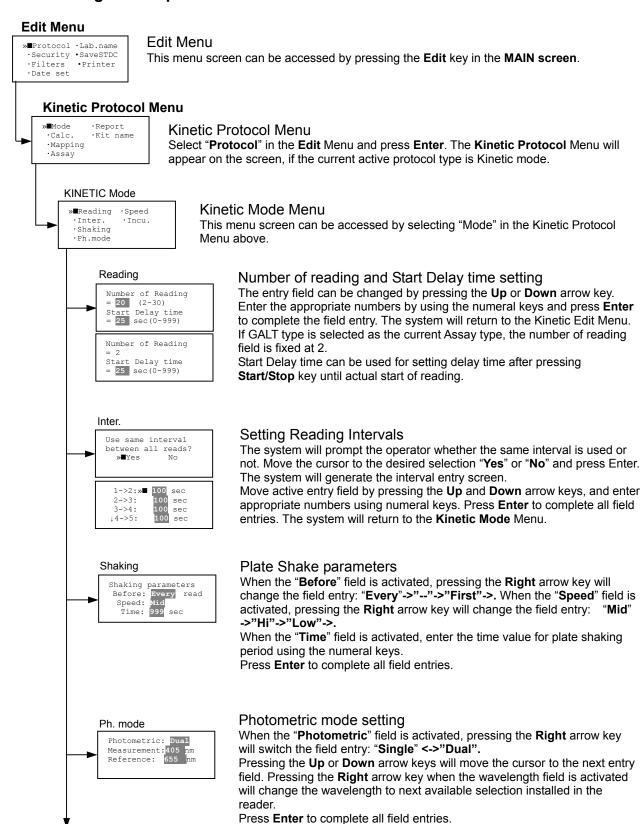
#### **Printing Reports**

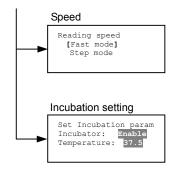
Select "Reports" and press Enter to print the current active plate data report.

#### Printing Protocol information


Select "Protocol" and press Enter to print all parameter setting in the current active Protocol.

#### Stop printing


Pressing **Start/Stop** key during printing will stop the print job immediately. When printing is completed, the system will automatically return to the **MAIN** screen.


# 4.3.4. Memory Recall operation

#### **MEMORY RECALL MENU**

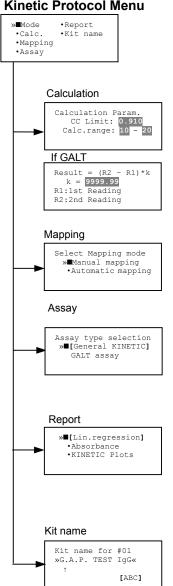


# 4.3.5. Editing Kinetic protocol





### Selecting Reading Speed


Pressing the **Up** or **Down** arrow keys will switch the selection. Press Enter to complete the selection.

### Incubator parameter setting

When the "Incubator" field is activated, pressing the Right arrow key will switch the field entry: "Enable" <-> "Disable".

Pressing the Up or Down arrow keys will move the cursor to the next entry field. When the Temperature field is activated enter the temperature value using the numeral keys. Press Enter to complete all field entries. This setting is available only when the Incubator is installed in the system.

#### Kinetic Protocol Menu



# Calculation Parameter setting

When the "CC Limit" field is activated, pressing the numeral key will enter the desired numbers. Press Enter to complete all field entries.

If the GALT Reports is activated, pressing the numeral keys will enter the desired numbers. Press Enter to complete all field entries.

### Plate Mapping

See Plate Map setting procedure.

#### Selecting Kinetic Assay type

Move the cursor to the desired Assay type by pressing the **Up** or **Down** arrow keys. Press Enter to complete the selection.

The item with mark "[]" is the currently selected item.

Result = factor x (2nd Read – 1st Read) GALT assay:

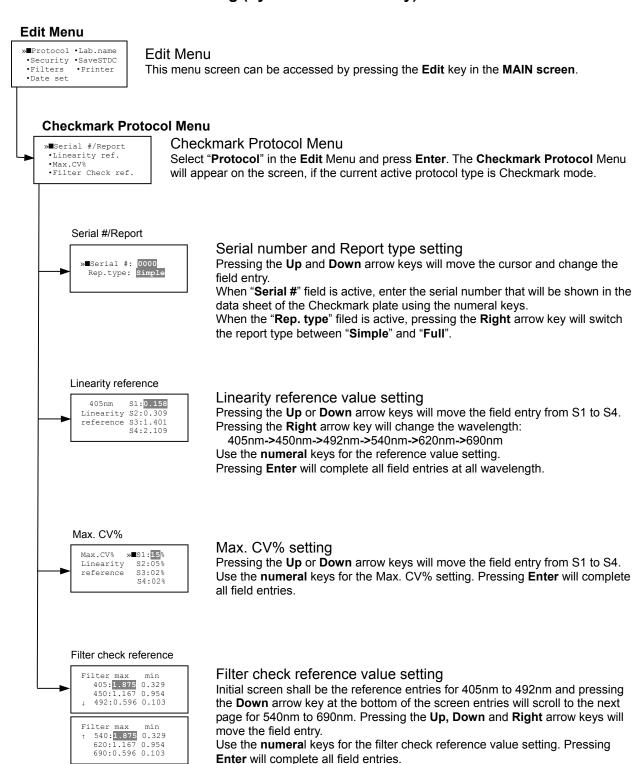
### Selecting report type

Move the cursor to the desired report type by pressing the **Up** or **Down** arrow keys. Pressing the **Right** arrow key will select or deselect the item.

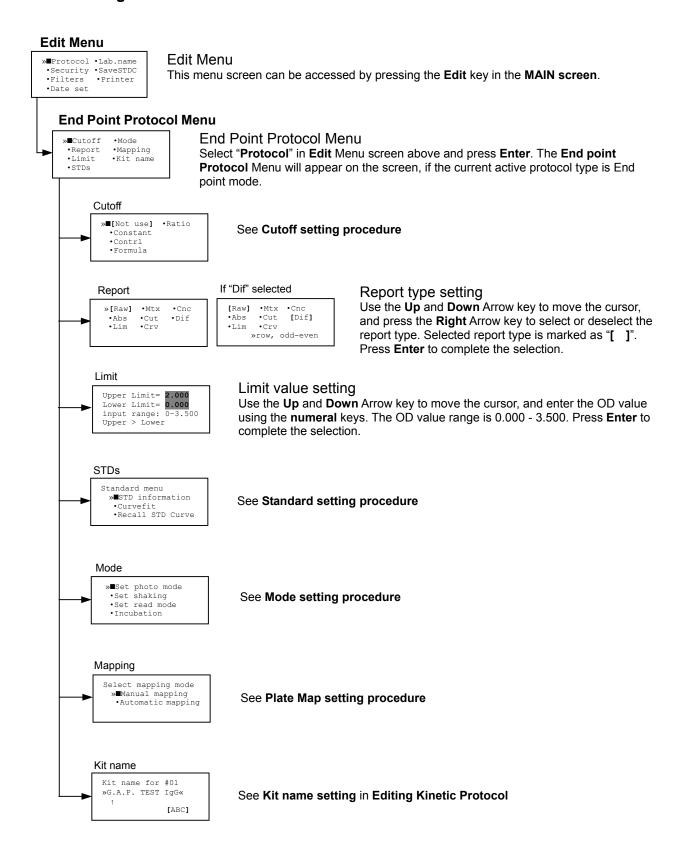
Press **Enter** to complete the selection.

Note: When GALT assay is selected "GALT report" shall be the only one option on this screen.

#### Kit name setting


Use the **Up** and **Down** arrow keys to select alphabet from "A" to "Z" and space. Use the **Number** keys for numeric input.

**Right** arrow key to move the cursor to the right.


Left arrow key to slip out of the screen and it returns to the Protocol Menu

Pressing "./FUNC" key will change the character mode: Upper case alphabet -> Lower case alphabet -> symbol. Current character mode is indicated on the lower right corner of the LCD.

# 4.3.6. Checkmark value setting (by Administrator only)

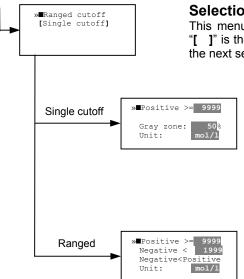


# 4.3.7. Editing End Point Protocol



# 4.3.8. Cutoff setting procedure




### **Cutoff setting Menu**

This menu is entered by choosing "Cutoff" in the End Point Protocol Menu. It is used to set the cutoff type. The cutoff type marked with "[ ]" is the current selection. The **Up** and **Down** arrow key moves the cursor to the desired item in the menu list. When the desired parameters have been selected, press **Enter** twice to accept the selection and to resume to the next screen.

"Not use" means that the reader does not generate the cutoff report.

- 4 types of cutoff are supported as below.
  - 1. Cutoff Constant
  - 2. Cutoff Control
  - 3. Cutoff Formula
  - 4. Cutoff Ratio

# a. Cutoff Constant setting

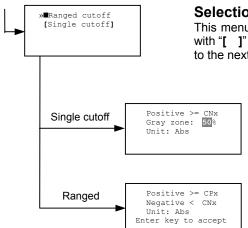


# **Selection of Single/Ranged Cutoff Constant**

This menu selects Single or Ranged cutoff type. The cutoff type marked with "[ ]" is the current selection. The **Enter** key seals the selection and resumes to the next setting screen.

### Single Cutoff Constant

The **Numerical** keys and the **Decimal point** key are used to enter the positive and gray zone values. The **Right** arrow key is used to select the unit. The **Up** and **Down** arrow key moves the cursor to the desired parameter of the single cutoff. The **Enter** key sets all values and selection of the cutoff constant and returns to the previous screen.


#### **Ranged Cutoff Constant**

The **Numerical** keys and the **Decimal point** key are used to enter the positive and negative values. The **Right** arrow key is used to select the unit. The **Up** and **Down** arrow key moves the cursor to the desired ranged cutoff parameters. The **Enter** key sets all values and selection of the cutoff constant and returns to the previous screen.

### NOTE:

Two available Cutoff constant are "Absorbance" and "Concentration". If "Abs" is chosen, the Absorbance cutoff will be done with the cutoff constant parameters defined and the absorbance report is generated. For other units defined in the curve fit setting, the Concentration value using the curve fit and then cutoff is done with the cutoff constant parameters defined and the concentration value of each well. It is necessary to set the curve fit parameters.

# b. Cutoff Control setting

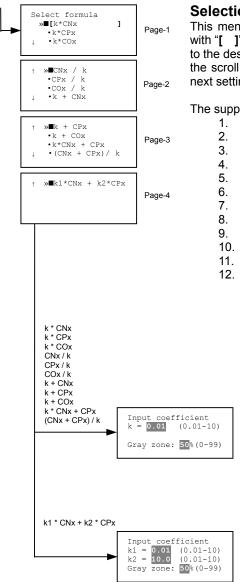


# **Selection of Single/Ranged Cutoff Control**

This menu screen selects Single or Ranged cutoff type. The cutoff type marked with "[ ]" is the current selection. The **Enter** key seals the selection and resumes to the next setting screen.

# **Single Cutoff Control**

The **Numerical** keys are used to enter the gray zone value. The unit is fixed to "Abs". The **Enter** key sets the value of the cutoff control and returns to the previous screen.


## **Ranged Cutoff Control**

There is no parameter to set for the ranged cutoff control. The **Enter** key returns to the previous screen.

### NOTE:

The "CNx" means the mean absorbance value of Negative control wells and the "CPx" means the mean absorbance value of Positive control wells. These wells are defined in the plate map setting. The cutoff is done with the Positive and Negative value to the absorbance value of each well.

### c. Cutoff Formula setting



#### Selection of Formula

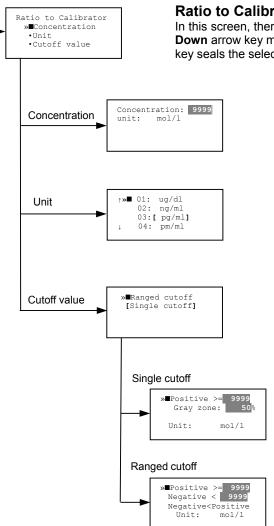
This menu screen selects a formula for cutoff calculation. The formula marked with "[ ]" is the current selection. The **Up** and **Down** arrow key moves the cursor to the desired type of the formula. The movement of the cursor also accompanies the scroll of this screen. The **Enter** key seals the selection and resumes to the next setting screen.

The supported formula types are:

- 1. k \* CNx
- 2. k \* CPx
- 3. k \* COx
- 4. CNx/k
- 5. CPx / k
- 6. COx / k
- 7. k + CNx
- 8. k + CPx
- 9. k + COx
- 10. k\*CNx + CPx
- 11. (CNx + CPx)/k
- 12. k1\*CNx + k2\*CPx

### Coefficient for Cutoff Formula #1 to #11

The **Numerical** keys and the **Decimal point** key are used to enter the coefficient "k" and gray zone values. The **Up** and **Down** arrow key moves the cursor to the desired parameter of the cutoff formula. The **Enter** key sets all values of the cutoff formula and returns to the previous screen.


### Coefficient for Cutoff Formula #12

The **Numerical** keys and the **Decimal point** key are used to enter the coefficient "k1" and "k2" and gray zone values. The **Up** and **Down** arrow key moves the cursor to the desired cutoff formula. The **Enter** key sets the all values of the cutoff formula and returns to the previous screen.

#### NOTE:

The "CNx" means the mean absorbance value of Negative control wells, the "CPx" is the mean absorbance value of Positive control wells and the "COx" is the mean absorbance value of Cutoff control wells. These wells are defined on the plate map setting. The cutoff value is calculated using the defined formula with the defined values and coefficients.

## d. Cutoff Ratio setting



#### Ratio to Calibrator

In this screen, there are three items for setting the ratio to calibrator. The Up and Down arrow key moves the cursor to the desired item in the menu list. The Enter key seals the selection and resumes to the next setting screen.

#### **Concentration of Calibrator**

The **Numerical** keys and the **Decimal point** key are used to enter the calibrator concentration value. The Enter key sets the value and returns to the previous screen.

#### **Unit of Calibrator**

17 units are supported, as for the standard's unit. The unit marked with "[ ]" is the current selection.

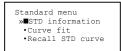
The setting procedure is the same as the unit selection of Standards.

## **Cutoff value setting**

This menu screen selects Single or Ranged cutoff type. The cutoff type marked with "[ ]" is the current selection. The Enter key seals the selection and resumes to the next setting screen

## **Single Cutoff Control**

The Numerical keys are used to enter the Positive cutoff concentration value and gray zone value. The Enter key sets these cutoff ratio values and returns to the previous screen.

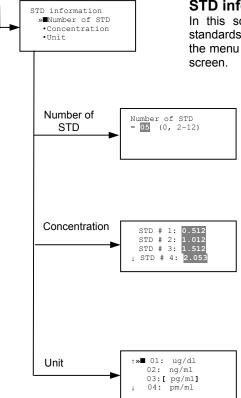

### Ranged Cutoff Control

The Numerical keys are used to input the Positive and the Negative cutoff concentration value. The Enter key sets these cutoff ratio and returns to the previous screen.

### NOTE:

The calibrator concentration value is used to convert the absorbance value of each well into concentration value. The ratio of Concentration/Absorbance of Calibrator well is applied to the conversion. The cutoff is done with the defined Positive and Negative values to the converted concentration value of each well.

# 4.3.9. Standard setting procedure




### Standard curve setting Menu

This menu screen is entered by choosing "STDs" in the End Point Protocol Menu screen. It is used to set the concentration data and the curve fit type for a standard curve or to recall a memorized standard curve.

The **Up** and **Down** arrow key moves the cursor to the desired item in the menu list. The **Enter** key seals the selection and resumes to the next setting screen.

# a. STD information setting



### STD information

In this screen, there are three items for setting the concentration data of standards. The **Up** and **Down** arrow key moves the cursor to the desired item in the menu list. The **Enter** key seals the selection and resumes to the next setting screen.

#### **Number of Standards**

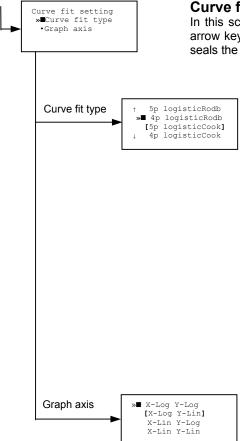
The **Numerical** keys are used to enter the number of Standards. 0 means that the curve fit report is not used. The **Enter** key sets the number and returns to the previous screen.

The maximum number of standards is 12.

#### Concentration

The **Numerical** keys and the **Decimal point** key are used to enter the concentration values of Standards. The **Up** and **Down** arrow key moves the cursor to the desired position. The movement of the cursor also accompanies the scroll of this screen. The **Enter** key sets all values of the concentration of standards and returns to the previous screen.

#### Unit


17 units are supported as below. The unit marked with "[ ]" is the current selection. The **Up** and **Down** arrow key moves the cursor to the desired unit type. The movement of the cursor also accompanies the scroll of this screen. Press **Enter** twice to select the unit type and to return to the previous screen.

The supported types of unit are:

| supported types of arm are. |         |            |  |  |
|-----------------------------|---------|------------|--|--|
| 1.                          | mol/l   | 11. pg/ml  |  |  |
| 2.                          | m mol/l | 12. U/ml   |  |  |
| 3.                          | u mol/l | 13. IU/ml  |  |  |
| 4.                          | n mol/l | 14. uIU/ml |  |  |
| 5.                          | p mol/l | 15. mIU/ml |  |  |
| 6.                          | mg/l    | 16. EU     |  |  |
| 7.                          | ng/l    | 17. Arbit. |  |  |
| 8.                          | pg/l    |            |  |  |
| 9.                          | ug/dl   |            |  |  |

10. ng/ml

# b. Curve fit setting



#### **Curve fit**

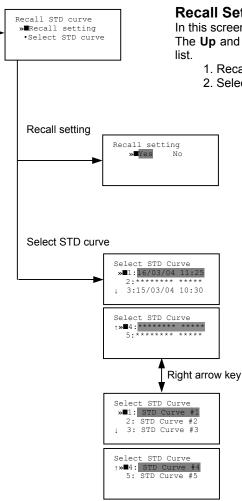
In this screen, there are two items for setting the curve fit. The Up and Down arrow key moves the cursor to the desired item in the menu list. The Enter key seals the selection and resumes to the next setting screen.

### **Curve fit type**

10 types of curve fit are supported as below. The curve fit type marked with "[ ]" is the current selection. The **Up** and **Down** arrow key moves the cursor to the desired curve fit type. The movement of the cursor also accompanies the scroll of this screen. Press **Enter** twice to select the unit type and to return to the previous screen.

The supported curve fit types are:

- 1. 5P Logistic Rodbard
- 2. 4P Logistic Rodbard
- 3. 5P Logistic Cook-Wilkenson
- 4P Logistic Cook-Wilkenson 4.
- 5P Exponential 5.
- Sigmoid Logistic 6.
- 7. Linear regression
- 8. Quadratic regression
- 9. Cubic spline
- Point To Point regression


### **Graph axis**

4 types of graph are supported as below. The curve fit type marked with "[ ]" is the current selection. The Up and Down arrow key moves the cursor to the desired graph type. Press Enter twice to select the unit type and to return to the previous screen.

The supported graph types are:

- 1. Log - Log
- 2. Log - Linear
- 3. Linear - Log
- 4. Linear - Linear

### c. Recall STD curve setting



### **Recall Setting of Standard Curve**

In this screen, there are two items for setting the Recall STD curve as below. The **Up** and **Down** arrow key moves the cursor to the desired item in the menu list

- 1. Recall setting (Yes/No)
- 2. Selecting the storage number of standard curves (1 -> 5)

### Recall setting

Move the cursor to the desired position using the **Up**, **Down** or **Right** arrow keys. **Enter** key accepts the setting and returns to the Standard menu screen.

Yes: Recalling of the standard curve is active.

No: Recalling of the standard curve is inactive.

### Storage number selection

Five memories are selectable. The vacant memory which is marked with asterisks on the date and time field is also selectable. But it is necessary to save any standard curve before using its protocol.

Move the cursor to the desired position using the **Up** and **Down** keys.

This setting screen consists of two parts. The **Right** arrow key is used to switch the indication field between the date and time to the standard curve name.

Move the cursor to the desired position using the **Up** and **Down** keys. **Enter** key accepts the storage number and returns to the Standard menu screen.

### NOTE:

If the recall of standard curve is active (the recall setting is "Yes"), the Standard information setting and the Curve fit setting will be invalidated and there setting screens will not open.

### 4.3.10. Mode setting procedure

≫■Set Photo mode
•Set shaking
•Set read mode
•Incubation

### **Mode setting Menu**

This menu screen is entered by choosing the "Mode" in the End Point Protocol Menu screen or the Kinetic Protocol Menu screen. It is used to set the plate reading conditions. The **Up** and **Down** arrow key moves the cursor to the desired item in the menu list. The **Enter** key seals the selection and resumes to the next setting screen.

#### a. Set Photo mode



#### Photo mode

In this screen, the user chooses Single or Dual wavelength measurement and assigns the measurement and reference (for dual wavelength measurement) filters. The assignment of the reference filter appears for dual wavelength measurement.

The **Up** and **Down** arrow key moves the cursor to the desired parameter. The **Right** arrow key chooses Single/Dual wavelength measurement or selects filter number that is installed on the "Filters" of Edit Menu screen. The **Enter** key seals the selection and returns to the previous screen.

### b. Set shaking




### Shaking

In this screen, the user selects/deselects shaking function, sets the shaking strength and enters the shaking time. A shaking time of 0s indicates no shaking. The maximum shaking time is 999 seconds.

The **Up** and **Down** arrow key moves the cursor to the desired parameters. The **Right** arrow key toggles between Yes/No (Select/Deselect) shaking or selects strength: Low/Middle/High. The **Numerical** keys are used to enter the shaking time. The **Enter** key seals the selection and returns to the previous screen.

### c. Set read mode



### Read mode

In this screen, the user chooses Fast or Step reading and also chooses Normal or Evaluation mode.

The "[ ]"indicates the current selection. The **Up** and **Down** arrow key moves the cursor to the desired parameters. The **Right** arrow key chooses Fast/Step speed or chooses Normal/Eval mode. The **Enter** key seals the selection and returns to the previous screen.

The followings are the description of each read mode parameter.

#### Reading speed

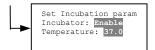
Fast reading: 6 sec/single wavelength reading, 10 sec/dual wavelength

reading

Step reading: 15 sec/single wavelength reading, 30 sec/dual wavelength

reading

### Reading mode


Normal mode: Plate reading once

Evaluation mode: Four plate readings per one of measurement are

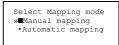
performed and the average data of their plate readings is

generated as a plate data.

### d. Incubation



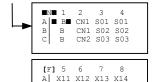
### Incubation


In this screen, the user switches on/off the Incubator and sets the incubation temperature. The temperature setting range is from 25.0 to 45.0 degrees.

The **Up** and **Down** arrow key moves the cursor to the desired parameter. The **Right** arrow key chooses "Enable" or "Disable" (ON/OFF) of Incubator. The **Numerical** keys and the **Decimal point** key are used to input the incubation temperature. The **Enter** key seals the selection and returns to the previous screen.

### NOTE:

The Incubator is optional. If the incubator is not installed and the "Incubation" menu is chosen, a warning message will appear on the screen.


### 4.3.11. Plate Map setting procedure



### Select Mapping mode Menu

This menu screen is entered by choosing the "Mapping" in the End Point Protocol Menu screen or the Kinetic Protocol Menu screen. It is used to set the plate format (plate mapping). The **Up** and **Down** arrow key moves the cursor next to the desired item of menu list. The **Enter** key seals the selection and changes this screen to the next setting screen.

### a. Manual Mapping



B X21 X22 X23 X24 C X31 X32 X33[X34]

### **Manual Mapping**

In this screen, the user can set the plate format manually. 10 well types as below are available to set.

### Well type:

The supported well types are:

| Well type                                                                                                                                                                                                                    | Indication on LCD                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| <ol> <li>Blank:</li> <li>Sample:</li> <li>Standard:</li> <li>In-kit Control: Positive Control Weak Positive Control Negative Control Cutoff Control</li> <li>Calibrator</li> <li>QC Control:</li> <li>Empty well:</li> </ol> | B X00X99 S01S99 CP0CP9 CW0CW9 CN0CN9 CO0CO9 CL0CL9 QC0QC9 |

The key assignments of well type are:

"0/ÉMP" --- Empty well

"1/SMP" --- Sample well

"2/BLK" --- Blank well

"3/STD" --- Standard well

"4/CO" --- Cutoff Control well

"5/QC" --- QC well

"6/CAL" --- Calibrator well

"7/CP" --- Positive Control well

"8/CN" --- Negative Control well

"9/CW" --- Weak Positive Control well

#### Two edit modes in plate mapping:

There are two editing modes, or the well type input mode and the well number input mode. The current input mode is displayed at the upper left corner of the screen. In case of the well type input mode, the mode sign is "[F]". And in case of the well number input mode, it is " $\blacksquare N \blacksquare$ ".

The cursor that encloses the editing position of well has two types of enclosures depending on the mode. For example, "[S01]" accepts the well type keys that be assigned to the numerical keys and " $\blacksquare$ S01 $\blacksquare$ " accepts the numerical input.

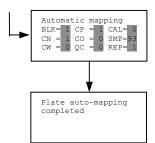
The mode is easily changed with the **Decimal point** key.

#### **Key functions:**

The **Up**, **Down**, **Right** and **Left** arrow key moves the cursor to the desired well. The movement of the cursor also accompanies the scroll of this screen. The **Left** arrow key will return the screen to the preceding screen, or the "select Mapping mode Menu", only if the cursor is on the column #1. At this time, the selection screen appears (See the left figure).

The **Decimal point** key changes the input mode.

The **Numerical** keys have two functions that one is used to input the number and another is used to select a well type.


The **Enter** key checks the consistency between the edited plate map and other parameters, memorizes the plate map into the protocol and changes this screen back to the preceding screen. If it founds any inconsistency, a warning message will be appeared on the screen.

Discard change? 1:Yes 2:No Press 1 or 2 key

### Acceptable range of number for each well type:

- 1. Blank and Empty wells are not acceptable for any number.
- Sample and Standard wells: 00 99
   Standard wells: 01 99
- 4. Control and Calibrator wells: 0 9

### b. Automatic mapping



Discard change?

Press 1 or 2 key

### **Automatic mapping**

In this screen, the user can input each number of the well types for a plate map. These defined numbers are used to set a plate map automatically.

### Well type:

9 well types are available to set the number as below.

1. BLK : Blank (0->10) : Control CN (0->9) 2. CN 3. CW : Control CW (0->9) 4. CP : Control CP (0->9) 5. CO : Control CO (0->9) : Control QC (0->9) 6. QC 7. CAL : Calibrator (0->9) 8. SMP : Sample (0->96) 9. REP : Replicate well (1->4)

It is possible to define the number of Blanks, Samples, Calibrators and Controls. But it does not include the number of Standards because of the Standard is defined at the Standard setting menu.

The number of replicate wells is also included. It is used for replicating each well type individually.

### **Key functions:**

The **Up**, **Down**, **Right** and **Left** arrow keys are used to move the cursor to the next position. The **Numerical** keys are used to input the mapping parameters. The **Enter** key accepts the mapping parameters and it sets a plate map automatically using these parameters.

During the execution of the plate mapping, "Plate auto-mapping completed" message is appeared on the screen. After that it returns automatically to the previous **Protocol Menu** screen.

If the **Left** arrow key is pressed at the left end position of the cursor, the left figure will appear on the screen. If the user chooses "Yes", the system will return to the previous **Protocol Menu** screen. If the user chooses "No", the system will stay in this setting screen.

### Placing order and placing direction of plate mapping:

Placing order

The placing order of Blanks, Standards, Samples, Calibrators and Controls are fixed as follows. The numbering for Standards, Samples, Calibrators and Controls is started at 1.

- 1. Blank
- 2. Standard 1 -> 12 ---- NOTE
- 3. Control CN 1->9
- 4. Control CW 1->9
- 5. Control CP 1->9
- 6. Control CO 1->9
- 7. Control QC 1->9
- 8. Calibrator 1->9
- 9. Sample 1->96
- Empty well

**NOTE:** Only if the "Cutoff Control", the "Value by Formula" or the "Ratio to Calibrator" is selected for the Cutoff, the plate mapping will skip the placing arrangement for Standards.

Placing direction:

The placing direction of the mapping is limited to the column direction as below. Column direction: A1 -> H1, A2 -> H2, -----, A12 -> H12

Warning: The total Of mapped wells has Exceeded 96. Press any key

Entered value is Out of range BLK: 0 - 10 Press any key

### **Warning and Error of Automatic Mapping:**

Warning screen:

If the total number of mapping wells exceeds 96 wells, a warning message in the left figure will appear on the screen. The calculation of the total number of mapping wells is as below:

(Blanks+Standards+CNs+CWs+CPs+COs+QCs+Calibrators+Sample)\*Replicates

The plate mapping is executed normally and the exceeded part is invalidated.

#### Error screen:

If one or more mapping parameters are over the input range, an error message in the left figure will appear on the screen.

On the third line of the LCD, the name of the parameter which has been out of range and its input range will appear.

Example: "BLK: 0 - 10"

In case of more than one error, the first parameter of errors is indicated. By pressing nay key it returns to the automatic mapping screen.

### Example of automatic mapping:

An example of automatic mapping is as below.

1. Conditions of each parameter

Blank = 1

Standard = 8

Control CN = 2, CW = 0, CP = 2, CO = 0, QC = 0

Calibrator = 1

Sample = 32

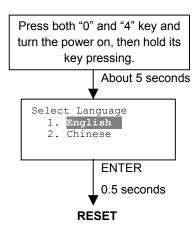
Replicate number = 2

2. Plate mapping data

|   | 1010 11 | iappii i | gaala |     |    |     |     |     |     |     |     |     |
|---|---------|----------|-------|-----|----|-----|-----|-----|-----|-----|-----|-----|
|   | 1       | 2        | 3     | 4   | 5  | 6   | 7   | 8   | 9   | 10  | 11  | 12  |
| Α | В       | S4       | S8    | CP2 | X3 | X7  | X11 | X15 | X19 | X23 | X27 | X31 |
| В | В       | S4       | S8    | CP2 | X3 | X7  | X11 | X15 | X19 | X23 | X27 | X31 |
| С | S1      | S5       | CN1   | CL1 | X4 | X8  | X12 | X16 | X20 | X24 | X28 | X32 |
| D | S1      | S5       | CN1   | CL1 | X4 | X8  | X12 | X16 | X20 | X24 | X28 | X32 |
| E | S2      | S6       | CN2   | X1  | X5 | X9  | X13 | X17 | X21 | X25 | X29 | Е   |
| F | S2      | S6       | CN2   | X1  | X5 | X9  | X13 | X17 | X21 | X25 | X29 | Е   |
| G | S3      | S7       | CP1   | X2  | X6 | X10 | X14 | X18 | X22 | X26 | X30 | Е   |
| Н | S3      | S7       | CP1   | X2  | X6 | X10 | X14 | X18 | X22 | X26 | X30 | Ε   |

## 4.4 Quick Guide - Reading a plate

- 1. Turn on the instrument. Allow about 15 seconds for the self-diagnosis. Allow the instrument to warm up for about three minutes prior to reading a plate.
- 2. Upon power up, the login screen will appear. Enter the login password (initial password: 00000), press Enter.
- 3. Program a protocol for your assay. See <u>section 4.3.5</u> for editing a Kinetic protocol, or <u>section 4.3.7</u> for editing an End point protocol. Make sure filters installed correlate with information entered in reader firmware.
- 4. Select the protocol of choice, if programmed. See the Memory Recall (section 4.3.4) for detailed operation.
- 5. Review or print parameters set in the protocol. See <u>section 4.3.7 Editing End Point</u> Protocol for details.
  - (a) Verify settings on Cutoff, Report, Limit, STDs, Mode, Mapping, and kit name parameters are as desired.
  - (b) Protocol setting can be printed see <u>section 4.3.3 Printing Reports and Protocol</u> information.
  - (c) All reports other than the Raw data report requires plate mapping. Set the plate map with instructions as in section 4.3.11 Plate Map setting procedure.
  - (d) The Matrix and Limit reports require assignment of upper and lower limits. See section 4.3.7, Editing End Point Protocol Limit setting window to set the upper and lower limits.
  - (e) The Cutoff report requires definition of the cutoff setting. Refer to <u>section 4.3.8</u> for cutoff setting procedure.
  - (f) The Curve fit and Concentration reports require that standard concentration and locations be defined. Refer to <u>section 4.3.9 for details to define the standards</u> and the curve fit parameters.
  - (g) Set general reading mode (single or dual wavelength reading, plate shaking, read mode, and incubation) following instructions in <u>section 4.3.10 Mode setting procedure.</u>


After warm-up is complete:

- 6. Press "Main" key, the main screen will appear on the LCD.
- 7. Carefully place the microplate in the reading chamber. Close the reading chamber door and press the "Start/Stop" key to read.

### 4.5 Language choice

The Model 680 Microplate Reader has two versions, English and Chinese, in the on-board software. And it allows the user to choose between English and Chinese.

### 1. Language choice screen



If both "0" key and "4" key are pressed at the same time and the power is turned on and then held for about 5 seconds, the reader will enter into the language choice mode. And the language choice screen is only shown in English.

Up and down arrow key are used to select a language. The enter key is used to determine it.

When the Enter key is pressed, the reader resets automatically. And then the reader restarts itself with the selected language.

If the selected language is difference from the previous language, the reader will clear all of memories and will be set to the initial condition. At that time the battery error screen appears, but it is not an actual error.

#### NOTE:

The details of the initial condition are described at the memory back-up section. See <u>section 4.2.3</u> for Memory Back-up.

### 2. Deference between English and Chinese version

There are some functionality differences between the English and the Chinese version as below.

(1). On-board storage of standard curves and graphs

The Chinese version does not support the on-board storage of standard curves and graphs. Therefore, saving and recalling of a standard curve is not available for Chinese version.

(2). Automatic mapping function for the plate mapping

The Chinese version has the function of automatic mapping, but it is an old style. It does not allow the user to input each number of the well types for a plate map.

(3). Cutoff formula

The Chinese version supports only five types of the cutoff formula. The supported formulas for Chinese version are as follows.

- i. K \* CNx
- ii. K + CNx
- iii. K\*CNx + CPx
- iv. (CNx + CPx)/K
- v. K1\*CNx + K2\*CPx

### (4). TeSeE Screening Report

The Chinese version does not support TeSeE and TeSeE eq screening report. Endpoint Protocol #5 and Endpoint Protocol #6 for Chinese version is worked as a normal endpoint protocol. The UTSE command and DTSE command in Command Language does not function in Chinese version.

### (5). Retrieval function for plate data

The Chinese version does not support this feature. The URPD (Upload Raw Plate Data) and DRPD (Download Raw Plate Data) command in Command Language does not function in Chinese version.

### (6). Serial number input/output

The Chinese version does not support Serial number input/output. It means that the serial number does not appear in the head line of each printout report.

## Section 5. Instrument service by the user



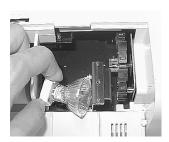
**Caution:** Electrical shock hazardous! Always disconnect the instrument from the AC power source before opening the service compartment.



**Caution:** The lamp and the lamp cover may be very HOT! Use caution and allow the lamp to cool before attempting service.

### 5.1 Installing Interference Filters

- 1. With the power off, open the rear cover of the instrument by pressing the release latch located on the top left portion of the cover.
- 2. The filter wheel is located on the left side of the instrument. Note that the filter wheel has eight filter positions.
- 3. Rotate the filter wheel to the desired filter. Grasp the top of filter frame and pull up to remove the filter.
- 4. Insert the new filter into the desired filter position.
- 5. Ensure that the new filter is added to the filter list as follows: Main menu->Edit->Filters.


### 5.2 Changing the Lamp

- 1. With the power off, open the rear cover of the instrument by pressing the release latch located on the top left portion of the cover.
- Remove the two screws on the black plastic cover and carefully remove the plastic cover.
- Remove the screw on the metal cover. Lift the cover up and away from the instrument. This will allow the lamp to be pulled free from the lamp housing.
- 4. Holding the ceramic base in one hand and the lamp housing in the other, carefully pull the lamp free of the base.
- 5. Carefully insert the new lamp firmly in the ceramic base. Apply even pressure when inserting the lamp so that the bulb dose not become misaligned in the reflector housing. Be extremely careful not to touch the front glass of the lamp during installation.
- 6. Position the new lamp into the housing so that the plastic guides hold the flange of the lamp.
- 7. Carefully place the metal cover over the lamp. Tighten the screw.
- 8. Replace the plastic cover and tighten the screws.
- 9. Close the rear cover.









## Section 6. Troubleshooting and Error Messages

The Model 680 Microplate Reader constantly monitors several functions and will display appropriate error message on the LCD when errors are encountered.

1. LCD appears blank on power up.

**a.** Power switch is not turned on. Turn on power switch on the rear panel.

 Unit is not plugged into AC outlet or power code is not attached to the instrument. Check power cord connections at outlet and on the rear panel of the instrument.

**c.** The AC outlet is non-functional. Check circuit breakers or fuses.

d. Instrument has blown a fuse.

Check the fuse on the rear panel of the instrument, and replace if necessary. Replace only with the same type fuse. If the instrument continues to blow fuses, discontinue use and contact your Bio-Rad service representative immediately.

2. Instrument displays "Light bulb error" message indicating that the bulb is burned out.

Check whether lamp is emitting light.

**a.** Lamp is not emitting light.

Replace the lamp as described in Section 5.2

**b.** Lamp is emitting light.

Check the alignment of the lamp in the housing.

Align or replace the lamp if necessary.

**3.** Printer will not print on command.

**a.** Printer paper is not installed properly.

Verify that the paper is properly installed. Refer to Section 3.1 for details.

4. Plate carriage jams during reading, and "Carrier home sensor open status error", "Carrier home sensor closed status error", "Carrier jammed error before reading", or "Carrier jammed error after reading" is displayed.

Press the STOP button immediately. Position the plate carefully in the carriage, making certain that it is properly seated.

LCD displays "Filter missing".

5.

**a.** Plate is not seated in carriage properly.

Install a filter in the empty position. See Section 5.1.

Select the installed filter by pressing Edit key.

**6.** LCD displays "Filter disk jammed", indicating that the filter wheel is not turning freely.

Turn off the instrument, and inspect the filter wheel. Turn by hand to verify that the wheel is moving freely. Make sure that all the filters are properly installed and firmly seated. Contact your Bio-Rad representative if the filter wheel is jammed or if the problem persists.

7. LCD displays "Filter not installed".

Enter the Edit Menu by pressing Edit key, and set up the filters.

Wells have color, but absorbance values seem low.

**a.** Incorrect filter used for measurement and /or reference wavelength.

Check wavelength used in analysis. Read plate in single wavelength mode at all wavelength to verify that the proper filter was used. The measurement wavelength should produce the highest absorbance.

**b.** The best measurement wavelength filter for the substrate in use has not been installed in the filter wheel.

Check references for the substrate you are using, or determine the best measurement wavelength by analyzing the substrate product on a scanning spectrophotometer. Custom filters are available from 400 to 750 nm.

**c.** The filters have been switched in the wheel.

Check that the filters are installed in the correct position.

**9.** "Printer error" displayed.

Check for paper jam. Install the printer paper correctly.

**10.** "Battery error" displayed.

is displayed.

The internal battery is almost dead. Contact your local Bio-Rad service center or local representative.

"memory error",
"calendar error",
"LCD hardware error",
"Incubator error",
"Light level error between cannel",
"D/A conversion error",
"A/D conversion error"

Contact your local Bio-Rad service center or local representative if these problems persist.

# **Section 7. Specifications**

# 7.1 Instrument Specifications

| Operating panel                                                                         | Membrane pad with 4 arrov                                                                                              | v keys, 7 function keys and 11 numeral keys                                                                                                          |
|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Display                                                                                 | 4 lines x 20 alphabet charac                                                                                           | cters LCD                                                                                                                                            |
| Computer interface                                                                      | Bi-directional RS232C seria                                                                                            | al communication port, 9 pin D-sub plug                                                                                                              |
| External printer port<br>(Only when the internal<br>printer option is not<br>installed) | Centronics interface with AS<br>25 pin D-sub receptacle<br>80 characters output per lin                                |                                                                                                                                                      |
| Report types                                                                            | Raw, Absorbance, Matrix, Kinetic Report                                                                                | Limit, Cutoff, Concentration, curve fit, difference,                                                                                                 |
| Applicable plates                                                                       | 96 well microtiter plate of Po<br>(Plate Footprint: 127 x 85)<br>8 and 12 well strip plate<br>Maximum plate height: 16 | ` ''                                                                                                                                                 |
| Mixing                                                                                  | 3 speeds( Low, Mid, High)                                                                                              | Programmable time period: 0 - 999 seconds                                                                                                            |
| Data storage                                                                            | kinetic readings, protocol da                                                                                          | d-point, latest 2 data plates of 30 readings for ata and calendar/clock function shall be kept in even when the power is off.  ery shall be 5 years. |
| Warm-up time                                                                            | 3 minutes                                                                                                              |                                                                                                                                                      |
| Photometric<br>Methods                                                                  | Single and dual wavelength                                                                                             |                                                                                                                                                      |
| Photo detectors                                                                         | 8 silicon photodiodes for me                                                                                           | easurement and 1 silicon photodiode for reference                                                                                                    |
| Light source                                                                            | Tungsten halogen lamp 20\                                                                                              | W with 3000 hours average lifetime                                                                                                                   |
| Spectral range                                                                          | 400nm to 750nm                                                                                                         |                                                                                                                                                      |
| Interference filters                                                                    | Wavelength tolerance: ±3.0                                                                                             | nm, Band width: 10nm typically                                                                                                                       |
| Filter capacity                                                                         | 8 filters                                                                                                              |                                                                                                                                                      |
| Standard filters                                                                        | 450, 415, 490, 655nm                                                                                                   |                                                                                                                                                      |
| Optional filters                                                                        | 405, 540, 550, 570, 595, 63                                                                                            | 30, 750nm                                                                                                                                            |
| Reading speed                                                                           | Fast Reading                                                                                                           | 6 second with single wavelength reading 10 second with dual wavelength reading                                                                       |
|                                                                                         | Standard Reading                                                                                                       | 15 second with single wavelength reading 30 second with dual wavelength reading                                                                      |
| Indication range                                                                        | 0.000 to 3.5 OD                                                                                                        |                                                                                                                                                      |
| Resolution                                                                              | 0.001 OD                                                                                                               |                                                                                                                                                      |
|                                                                                         |                                                                                                                        |                                                                                                                                                      |

| Accuracy                                                                                                            | ±1.0% or 0.010 fron                                            | n 0 to 3.0 OD at 490nm                                           |  |  |
|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------|--|--|
| Linearity                                                                                                           | $\pm 1.0\%$ from 0 to 2.0 OD, $\pm 2.0\%$ from 0 to 3.0 OD     |                                                                  |  |  |
| Reproducibility                                                                                                     | 1.0% or 0.005 OD from 0 to 2.0 OD, 1.5% from 2.0 to 3.0 OD     |                                                                  |  |  |
| Inter-channel variation                                                                                             | 1.5% or 0.005 OD from 0 to 3.0 OD                              |                                                                  |  |  |
| Stability and Drift                                                                                                 | 0.010 OD at OD=1                                               | with single wavelength reading                                   |  |  |
| Incubator<br>(Factory option)                                                                                       | Temperature set point                                          | 25°C to 45°C, 0.1°C step<br>Set point must be 5°C above ambient. |  |  |
|                                                                                                                     | Set point accuracy                                             | Less than ±0.5°C when set point =37°C at RT=25°C                 |  |  |
|                                                                                                                     | Well to well uniformity                                        | Less than 0.7°C when set point =37°C at RT=25°C                  |  |  |
|                                                                                                                     | Warm-up time                                                   | Less than 5 minutes when set point =37°C at RT=25°C              |  |  |
| Internal Printer<br>(Factory option, external<br>printer port is not<br>available when this<br>option is installed) | Thermal printer, Pa                                            | per Width 112mm                                                  |  |  |
| Line Voltage                                                                                                        | Universal input: 10                                            | 00 - 240 VAC, 50/60Hz                                            |  |  |
| Power consumption                                                                                                   | 100 VA max.                                                    |                                                                  |  |  |
| Dimensions                                                                                                          | 340(W) x 330(D) x 1                                            | 152(H) mm                                                        |  |  |
| Weight                                                                                                              | 5.5 kg                                                         |                                                                  |  |  |
| Operating Environment                                                                                               | 5°C to 35°C<br>0 to 95% relative humidity without condensation |                                                                  |  |  |
| Storage Temperature                                                                                                 | -20°C to 50°C<br>0 to 95% relative hu                          | ımidity without condensation                                     |  |  |

# 7.2 Interface Specifications

The following specification describes the syntax and language required for computer control of the reader.

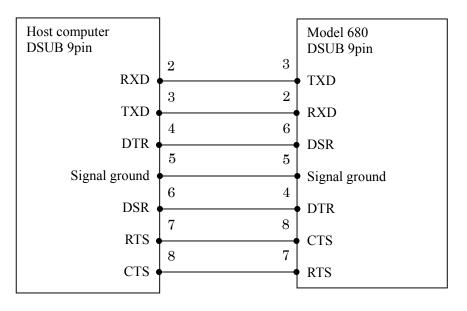
### 1. SIGNALS

TXD: transmit data RXD: receive data

DTR: data terminal ready
DSR: data set ready
CTS: clear to send
RTS: request to send

#### 2. TRANSMISSON

Baud rate: 9600
Data width: 8
Stop width: 1
Parity: None


#### 3. DATA

All data must be transmitted in ASCII.

The READER command interpreter must be "case blind" (no distinction between upper or lower case ASCII characters).

The first two characters of the command can distinguish all READER commands from each other.

### 4. SIGNAL ASSIGNMENT



### 7.3 Command Language for Model 680 Microplate Reader

### 7.3.1 Command Language for Remote control mode

1-1. Syntax

SYNTAX:

Command: <device name><space><command>[ <space><command args.>... ]<cr>

<device name>: "EIA.READER" – Model680 reader

Response: <response header><space><error code>[ <space><response data>... ]<cr>

<response header>: "ERE"

1-2. Commands

1-2-1. ID (Get Instrument ID)

<command>: "ID"

Request device ID

<arguments>: None

<response>: "ERE"<space><error code><space><id><cr>

<id>: "Model 680

1-2-2. AQ (Go to remote control mode)

<command>: "AQ"

Acquire remote control of the device and lock front panel key pad.

<arguments>: none

<response>: "ERE"<space><error code><cr>

**NOTE:** Until the reader receives the "**AQ**" command, the reader will not accept any other command by responding error code of "8073"-Device not in remote mode. Once the reader received the "**AQ**" command, the reader will turn into remote mote

and lock all keys on front panel except for START/STOP for release.

1-2-3. RL (Release remote control mode)

<command>: "RL"

Release remote control of the device and lock front panel key pad.

<arguments>: no arguments

<response>: "ERE"<space><error code><cr>

1-2-4. RS (Reset device)

<command>: "RS"

Reset device to power up configuration local mode

<arguments>: none

<response>: "ERE"<space><error code><cr>

1-2-5. MR (Maintenance report)

<command>: "MR"

Transmit maintenance report

<arguments>: none

<response>: "ERE"<space><error code><cr><mrecords><cr>

<mrecords>: maintenance records;

"On/Off:" <#on/off><cr>:number of times the reader was turned on.

"Hours:" <#hours><cr>:number of hours the reader was on.

"Plates:" <#plates><cr>:number of plates read.

This information is kept in battery backup RAM

### 1-2-6 RM (Reset maintenance report)

<command>: "RM"

Reset maintenance report values.

<arguments>: none

<response>: "ERE"<space><error code><cr>

### 1-2-7. ISTATUS (Get incubator status)

<command>: "ISTATUS"

Request incubator status from reader.

<arguments>: none

<response>: "ERE"<space><error code><space><inc status><cr>

<inc status>: <incubator exist status><space><on/off><space><setting temperature value>

<space><sensor temperature value>

incubator exist status: "0":The reader don't have incubator / "1":The reader have

incubator.

on/off - Incubator ON/OFF status, "0": incubator OFF / "1": incubator ON

setting & sensor temperature value:

(Temperature is 3 bytes ASCII encoded decimal value and floating point. ex: "37.0")

### 1-2-8. INCU (Set Incubator)

<command>: "INCU"

Incubator ON/OFF control; Benchmark Compatible Format

<arguments>: <on/off>

<cmd args>: on/off - Incubator ON/OFF

"0"; incubator OFF "1"; incubator ON

<response>: "ERE"<space><error code><cr>

### 1-2-9. WINC (Set Incubator Temperature)

<command>: "WINC"

Set Incubator control temperature data

<arguments>: < temperature >

<cmd args>: Setting temperature value (degree).

ASCII encoded decimal(1-10)

temperature set range: 25.0 to 45.0 degree Incubation adjustable in increments of 0.1 degree.

<response>: "ERE"<space><error code><cr>

### 1-2-10. FSTATUS (Get filter wheel status)

<command>: "FSTATUS"

Request filter wheel status from the reader.

<arguments>: none

<response>: "ERE"<space><error code><cr><filter status><cr>

<filter status>: <wl.1><space><wl.2><space><wl.3><space><wl.4><space>

<wl.5><space><wl.6><space><wl.7><space><wl.8>

wl.1 - wl.8:

filter wavelength at position 1 – position 8. ex."405"(ASCII encoded decimal)

"\*\*\*" will be returned when filter is not installed

1-2-11. RWELL (Read a plate well)

<command>: "RWELL"

Read a plate well

<arguments>: Single reading:<cl><space><rw><space><wp1>

Dual reading: <cl><space><rw><space><wp1><space><wp2>

< cmd args>: <cl>: Column number ASCII encoded decimal(1-12)

<rw>: Row number ASCII encoded decimal(1-8)</ri>

<wp1>: Measurement filter position ASCII encoded decimal(1 to 8)
<wp2>: Reference filter position ASCII encoded decimal(1 to 8)

Optional; only present for Dual wavelength reading

<response>: "ERE"<space><error code><space><abs.val><space>

<optional abs.val2 for reference wavelength><cr>

<abs.val1>: Absorbance values at measurement wavelength

(ASCII encoded floating point format) ex. "1.234"

<abs.val2>: Absorbance values at reference wavelength

(ASCII encoded floating point format) ex. "1.234"

1-2-12. RPLATE (Read plate)

<command>: "RPLATE"

Perform plate reading once

< cmd args>: <speed>: Plate reading speed, "1": fast speed, "2": Normal speed( ASCII encoded

decimal)

<mix time>: Plate mixing time(0 to 999) (ASCII encoded decimal) <mix speed>: Plate mixing power("L":Low, "M":middle,"H":High)

<meas. filter>: Measurement filter position(1 to 8)(ASCII encoded decimal) <ref. filter>: Reference filter position(1 to 8)(ASCII encoded decimal)

(Optional; only present for Dual wavelength reading)

<sp>: space(' ')

<re>ponse>: "ERE"<space><error code><space><abs. data><cr>

1-2-13. RTPLATE (Retransmit plate data)

<command>: "RTPLATE"

Retransmit the last one plate data

If the previous reading was read in the kinetic mode, the last plate data means the

final plate data from the set of plate data.

<arguments>: none

<response>: "ERE"<space><error code><space><abs. data><cr>

1-2-14. UPLD (Upload the protocol data)

<command>: "UPLD"

Upload the protocol data

<cmd args>: up load protocol number>: 1 to 66 (1 to 64 for Endpoint protocol, 65&66 for

kinetic protocol)

Example: EIA.READER UPLD 1 <cr>

<response>: "ERE"<space><error code><space><protocol data><cr>

1-2-15. DOWNLD (Download the protocol data)

<command>: "DOWNLD"

Download the protocol data

<down load protocol number>: 1 to 66 (1 to 64 for Endpoint protocol, 65&66 for

kinetic protocol)

<response>: "ERE"<space><error code><cr>

1-2-16. UTSE (Upload the TSE assay parameters)

<command>: "UTSE"

Upload the TSE assay parameters

<arguments>: <TSE type>:0= for TSE parameters / 1=for TSE EQ parameters

Example: EIA.READER UTSE 0 <cr>

<response>: "ERE"<space><error code><space><TSE or TSE eq assay parameters><cr>

1-2-17. DTSE (Download the TSE assay parameters)

<command>: "DTSE"

Download the TSE assay parameters

<arguments>: <TSE type><space><TSE or TSE eq assay parameters>

<TSE type>: 0= for TSE parameters / 1= for TSE eq parameters <TSE assay parameters>: Down load TSE assay parameters

(see"1-5 TSE and TSE eq assay parameters")

<response>: "ERE"<space><error code><cr>

1-2-18. URPD (Upload Raw Plate Data)

<command>: "URPD"

Upload Raw Plate Data

<arguments>: <type><space><memory number><space><data type>[<space><read

number of kinetic >]

<cmd args>: <type>:Data type(Endpoint= 0, Kinetic= 1)

memory number>: Memory # (Endpoint: 1 to 10, Kinetic: 1 or 2)

<data type>: Data type (Header= 0, Full Data= 1)

<read number of kinetic>: Reading number of kinetic (0, 1 -> 30) Optional for

Kinetic

It is only valid for the <data type>=1

Zero ("0") means that its parameter is inactive. Example: EIA.READER URPD 0 1 1 0<cr>

<response>: "ERE"<space><error code><space><Raw plate data><cr>

<Raw plate data>: See "1-6. Upload Raw Plate Data format"

1-2-19. DRPD (Download Raw Plate Data)

<command>: "DRPD"

Download Raw Plate Data

<arguments>: <raw plate data>

<raw plate data>: See "1-7. Download Raw Plate Data format"

<response>: "ERE"<space><error code><cr>

### 1-2-20. SSN (Set Serial Number)

<command>: "SSN"

Set Serial number

<arguments>: <Serial number>

<Serial number>: Max 5 ASCII characters(""(0x20) to"~"(0x7e))

Example: eia.reader ssn EP001<cr>

<response>: "ERE"<space><error code><cr>

### 1-2-21. GSN (Get Serial Number)

<command>: "GSN"

Get Serial number

<arguments>: none

<re>ponse>: "ERE"<space><error code><space><serial number><cr>

<Serial number>: 5 ASCII characters (The length of serial number is always 5.)

Example: eia.reader gsn<cr>

<response>: "ERE" 0000 EP001<cr>

#### 1-3. Absorbance Data

#### 1-3-1. Abs data

<abs.data>: <header><date time><reading info><Mes. data><cr>[<Ref. wavelength data><cr>]

Ref.data present for dual wavelength readings.

<header>: "BIO-RAD Model 680 Microplate READER" < cr>

<date time>: <day> "/" <month> "/" <year> <space> <hour> ":" <minutes> ":" <seconds> ><cr>

ex. "01/01/2001 01:05:02"

<reading info>: "Mes. filter:"<measurement filter wavelength data><cr>

"Ref. filter:"<reference filter wavelength data><cr>

Only when Dual wavelength reading

<Mes.data>: "begin"<cr><8 rows of 12 wells of abs. values><checksum><cr>".end"<cr>

> Measurement wavelength absorbance values are in ASCII encoded floating point format. Each absorbance value is separated by a space, but in case of minus value, a

minus sign is put instead.

Row1=wells(A1-A12),Row2=wells(B1-B12),....Row8=wells(H1-H12)

<Ref.data>: ".begin"<cr><8 rows of 12 wells of abs. values><checksum><cr>".end"<cr>

> Reference wavelength absorbance values are in ASCII encoded floating point format. Each absorbance value is separated by a space, but in case of minus value, a minus

sign is put instead.

Row1=wells(A1-A12),Row2=wells(B1-B12),....Row8=wells(H1-H12)

<checksum>: The checksum is a two byte sum in ASCII encoded decimal(0-255) of all the ASCII

characters transmitted in the measurement or reference data block. The checksum

does not include the character string ".begin" < cr > in the checksum calculations.

The following is an example of both <Mes.data> and <Ref.data>:

".begin" < cr>

" 0.101 0.102 0.103 0.104 0.105 0.106 0.107 0.108 0.109 0.110 0.111 \*.\*\*\*"<cr>

" 0.201 0.202 0.203 0.204 0.205 0.206 0.207 0.208 0.209 0.210 0.211 \*.\*\*\*"<cr>

" 0.301 0.302 0.303 0.304 0.305 0.306 0.307 0.308 0.309 0.310 0.311 \*.\*\*\*"<cr>

" 0.401 0.402 0.403 0.404 0.405 0.406 0.407 0.408 0.409 0.410 0.411 \*.\*\*\*"<cr>

" 0.501 0.502 0.503 0.504 0.505 0.506 0.507 0.508 0.509 0.510 0.511 \*.\*\*\*"<cr>

" 0.601 0.602 0.603 0.604 0.605 0.606 0.607 0.608 0.609 0.610 0.611 \*.\*\*\*"<cr>

" 0.701 0.702 0.703 0.704 0.705 0.706 0.707 0.708 0.709 0.710 0.711 \*.\*\*\*"<cr>

" 0.801 0.802 0.803 0.804 0.805 0.806 0.807 0.808 0.809 0.810 0.811 \*.\*\*\*"<cr>

<checksum><cr>

**Note:** Absorbance value greater than 3.500 or smaller than –3.500 shall be transmitted as asterisk.

<sup>&</sup>quot;.end" < cr>

### 1-4. Protocol data

All protocol data is ASCII code data.

Transmit format: <","(0x2c)><protocol data 1>< ","><protocol data 2><",">>...<protocol data 42><",">>","(0x2c) delimits each protocol item.

Protocol data download or upload orders:

| locol data download of upload orde | 1                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Item                               | P.C or Reader Transmit data                                                                                                                                                                                                                                                                                                                                                                                       |
| Protocol mode                      | "0"(endpoint) or "1"(kinetic), "2"(TeSeE), "3"(TeSeE eq)                                                                                                                                                                                                                                                                                                                                                          |
| Security lock status               | "0" unlock / "1" lock                                                                                                                                                                                                                                                                                                                                                                                             |
| Kit name[16]:                      | ASCII characters (max 15characters + null code)                                                                                                                                                                                                                                                                                                                                                                   |
| Plate reading mode                 | Plate reading mode ("0":Single / "1":Dual)                                                                                                                                                                                                                                                                                                                                                                        |
| Evaluation mode(endpoint only)     | "1"(Normal) or "2"(Evaluation)                                                                                                                                                                                                                                                                                                                                                                                    |
| Precision mode                     | 1:Standard precision mode / 2:High precision mode                                                                                                                                                                                                                                                                                                                                                                 |
| Number of reads                    | "1" (endpoint) / "2" to "30"(kinetic mode)                                                                                                                                                                                                                                                                                                                                                                        |
| Interval time [30](Kinetic mode)   | [0]:Start delay time, [1] to [29]:interval time<br>Start delay: "0" to "999" sec<br>Interval time: "0" to "1029" sec                                                                                                                                                                                                                                                                                              |
| Measurement wavelength data        | "400" to "750"nm                                                                                                                                                                                                                                                                                                                                                                                                  |
| Reference wavelength data          | "400" to "750"nm (When the single reading mode is single, Reference wavelength should be set to " (0x20).)                                                                                                                                                                                                                                                                                                        |
| Shaking mode                       | "0" to "2" "0"(disable) "1"(1 <sup>st</sup> read(kinetic mode only)) "2"(before every read)                                                                                                                                                                                                                                                                                                                       |
| Shaking speed                      | "0" to "2" "0"(Low) / "1"(Middle) / "2"(High)                                                                                                                                                                                                                                                                                                                                                                     |
| Shaking time                       | "0"to"999"sec                                                                                                                                                                                                                                                                                                                                                                                                     |
| Incubation control temperature     | "25.0" to"45.0" (include decimal point)                                                                                                                                                                                                                                                                                                                                                                           |
| Incubator enabled                  | "0" or "1"                                                                                                                                                                                                                                                                                                                                                                                                        |
| modelator chapted                  | "0"(No) / "1"(Yes) "0" to "4"                                                                                                                                                                                                                                                                                                                                                                                     |
| Cutoff type                        | "0"(Don't use cutoff) "1"(cutoff constant) "2"(cutoff control) "3"(value by formula) "4"(Ratio to calibrator)                                                                                                                                                                                                                                                                                                     |
| Cutoff value                       | "0" to "1" "0"(Single cutoff) "1"(Ranged cutoff)                                                                                                                                                                                                                                                                                                                                                                  |
| Cutoff formula type                | "1" to "12" "1": k*CNx                                                                                                                                                                                                                                                                                                                                                                                            |
| Cutoff unit <cr></cr>              | "0"(STD unit) / "1"(OD)                                                                                                                                                                                                                                                                                                                                                                                           |
| Cutoff K (K and K1)                | "0.01" to "10.0" (data length max: 4 characters(include decimal point))                                                                                                                                                                                                                                                                                                                                           |
| Cutoff K2                          | "0.01" to "10.0" (data length max: 4 characters(include decimal point))                                                                                                                                                                                                                                                                                                                                           |
|                                    | ".001 to 9999"                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                    | Item Protocol mode Security lock status Kit name[16]: Plate reading mode Evaluation mode(endpoint only) Precision mode Number of reads Interval time [30](Kinetic mode) Measurement wavelength data Reference wavelength data Shaking mode Shaking speed Shaking time Incubation control temperature Incubator enabled  Cutoff type  Cutoff value  Cutoff formula type  Cutoff unit <cr> Cutoff K (K and K1)</cr> |

|    |                                         | (data length max: 4 characters(include decimal point))                                                                                                                                                                                                                                                               |
|----|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 23 | Cutoff negative const value             | ".001 to 9999"                                                                                                                                                                                                                                                                                                       |
|    | -                                       | (data length max: 4 characters(include decimal point))                                                                                                                                                                                                                                                               |
| 24 | Gray zone                               | "0" to "99"                                                                                                                                                                                                                                                                                                          |
| 25 | Calibrator concentration value          | "0.001 to 9999" (data length max: 5 characters(include decimal point))                                                                                                                                                                                                                                               |
| 26 | Recall setting of Standard curve [3]    | [0] Recall setting: "1": No recall, "2": Recall [1] Recall STD curve number: "1" to "5" [2] No use: (Default= "1") (" "(0x20) data delimits replicate number.)                                                                                                                                                       |
| 27 | Number of standard                      | "0" to "12"                                                                                                                                                                                                                                                                                                          |
| 28 | Standard conc. value[12]                | "0.000" to "9999" (" "(0x20) data delimits each standard conc) (std.value < 1.0: max 5 characters(include decimal point)) (std.value >= 1.0: max 4 characters(include decimal point))                                                                                                                                |
| 29 | Standard unit                           | "1" to "17"  1:mol/l 2:mmol/l 3:umol/l  4:nmol/l 5:pmol/l 6:mg/l  7:ng/l 8:pg/l 9:ug/dl  10:ng/ml 11:pg/ml 12:U/ml  13:IU/ml 14:uIU/ml 15:mIU/ml  16:EU 17:ARBITRARY                                                                                                                                                 |
| 30 | Curve fit type                          | "1" to "10"  1: 5-parameter logistic Rodbard formula 2: 4-parameter logistic Rodbard formula 3: 5-parameter logistic Cook-Wilkenson 4: 4-parameter logistic Cook-Wilkenson 5: 5 Parameter Exponential 6: Sigmoid logistic 7: Linear regression 8: Quadratic regression 9: Cubic spline 10: Point to Point regression |
| 31 | Lower limit value                       | Lower limit value (0 to 3500(O.D value *1000))                                                                                                                                                                                                                                                                       |
| 32 | Upper Limit value                       | Upper limit value (0 to 3500(O.D value *1000))                                                                                                                                                                                                                                                                       |
| 33 | Correlation coefficient limit (kinetic) | Correlation coefficient limit value (0 to 999 (C.C value * 1000))                                                                                                                                                                                                                                                    |
| 34 | Calculation range start point (Kinetic) | Kinetic calculation range start point reading number (1 to 29) (This value is lower than calculation start point value.)                                                                                                                                                                                             |
| 35 | Calculation range endpoint (Kinetic)    | Kinetic calculation range end point reading number (1 to 29) (This value is big than calculation end point value.)                                                                                                                                                                                                   |
| 36 | GALT factor value                       | "0 to 9999.99" (data length max: 7characters(include floating point)) (A decimal place maximum length is 2.)                                                                                                                                                                                                         |
| 37 | GALT assay status                       | 0: other assay / 1: GALT assay                                                                                                                                                                                                                                                                                       |
| 38 | Kinetic print out report[4]             | Kinetic mode Print out report types (0=no print / 1=print) [0]:Absorbance [1]:kinetic plots [2]:Linear regression [3]:GALT report                                                                                                                                                                                    |
| 39 | Print out Report [9]                    | Print out report types (0=no print / 1=print) [0]: Raw data [1]: Absorbance data [2]: Limit [3]: Matrix [4]: Cutoff [5]: Curvefit [6]: Difference                                                                                                                                                                    |

|                                     | [7]: Difference subtraction                                                        |
|-------------------------------------|------------------------------------------------------------------------------------|
|                                     | 0:Even-Odd (column)                                                                |
|                                     | 1:Odd-Even(column)                                                                 |
|                                     | 2:Even-Odd(row)                                                                    |
|                                     | 3:Odd-Even(row)                                                                    |
|                                     | [8]: Concentration                                                                 |
|                                     | (" "(0x20) data delimits print out report types.)                                  |
|                                     | print out graph scale ("1" to "4")                                                 |
|                                     | 1:X-Log,Y-Log                                                                      |
| Graph Scale                         | 2:X-Log,Y-Linear                                                                   |
| •                                   | 3:X-Linear,Y-Log                                                                   |
|                                     | 4:X-Linear,Y-Linear                                                                |
|                                     | Plate format data("0" to "9")                                                      |
|                                     | "0": Empty                                                                         |
|                                     | "1": Sample                                                                        |
|                                     | "2": Standard                                                                      |
|                                     | "3": Positive control                                                              |
| Distance II famos et elete [0][4.0] | "4": Negative control                                                              |
| Plate well format data[8][12]       | "5": Cutoff control                                                                |
|                                     | "6": Weak positive control                                                         |
|                                     | "7": QC Control                                                                    |
|                                     | "8": Blank                                                                         |
|                                     | "9": Calibrator                                                                    |
|                                     | (" "(0x20) data delimits each row format.)                                         |
| Plate well solution number          | Solution number ("0" to "99")                                                      |
|                                     | (" "(0x20) data delimits each row solution number.)                                |
|                                     | Graph Scale  Plate well format data[8][12]  Plate well solution number data[8][12] |

### Example:

30 30 30 30 30 30 0,490,630,2,1,3,37.0,0,1,1,5,0,0.700,1.200,0.558,0.012,24,2.580,0 0 0,8,0.500 1.000 1.500 2.000 2.500 3.000 3.500 4.000 4.500 5.000 5.500 2 1 1 1 1 1 1 1 1 1,8 2 1 1 1 1 1 1 1 1 1 1 1 1 5 23 31 39 47 55 63 71,1 2 1 8 16 24 32 40 48 56 64 72,2 3 1 9 17 25 33 41 49 57 65 73,3 4 2 10 18 26 34 42 50 58 66 74,4 5 3 11 19 27 35 43 51 59 67 75,5 6 4 12 20 28 36 44 52 60 68 76,6 7 5 13 21 29 37 45 53 61 69 77,7 8 6 14 22 30 38 46 54 62 70 78,"

#### "TSE" and "TSE eq" Assay Parameter Format 1-5.

"TSE" and "TSE eq" parameter is same format.
All parameter data is ASCII code data.
Transmit format: <","(0x2c)><TSE item 1><","><TSE item 2><",">> ...<TSE item 7><",">> ","(0x2c) delimits each parameters item.

### "TSE" and "TSE eq" assay data download or upload orders:

|   | Item                                                     | P.C or Reader Transmit data                                                                                                                                                                                 |
|---|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Report title [24]:                                       | Report title (for internal & external print report) ASCII characters (max 24characters)                                                                                                                     |
| 2 | Maximum OD value for Control<br>Negative                 | "1" to "3500" This value is Maximum OD * 1000, no decimal point data length max: 4 characters                                                                                                               |
| 3 | Minimum O.D value for Control<br>Negative                | "-3500" to "3500"  This value is Minimum OD * 1000, no decimal point data length max: 5 characters (include sign character) (This value is lower than Max O.D value for CN.)  This value is not being used. |
| 4 | validation data rang for Control<br>Negative             | "1" to "999"  Data range (0.001 to 0.999 * 1000, no decimal point data length max: 3 characters                                                                                                             |
| 5 | Minimum O.D value for Control Positive                   | "1" to "3500"  This value is Minimum OD * 1000, no decimal point data length max: 4 characters include sign flag                                                                                            |
| 6 | Calculation value k1 (Positive Cut-off=(CNx + K1) * k2)  | "0" to "9999"  K1 Calculation value * 1000 data length max: 4 characters                                                                                                                                    |
| 7 | Calculation value k2 (Positive Cut-off=(CNx + K1) * k2)  | "0" to "9999"  K2 Calculation value * 1000 data length max: 4 characters                                                                                                                                    |
| 8 | Calculation value k3 (Negative Cut-off= (CNx + K3) * k4) | "0" to "9999"  K3 Calculation value * 1000 data length max: 4 characters                                                                                                                                    |
| 9 | Calculation value k4 (Negative Cut-off= (CNx + K3) * k4) | "0" to "9999"  K4 Calculation value * 1000  data length max: 4 characters                                                                                                                                   |

### Example:

<sup>&</sup>quot;,TSE assay report ,2500,123,400,1010,210,1000,210,900

### 1-6. Upload Raw Data Format

### 1-6-1. Header Type Format of the Upload Raw Plate Data

<upl><upload raw plate data>: <memory #><data exist><date time><cr></mi>

< memory #>: (1). End point

"End point # " <memory number>" <cr> <memory number>: 1 to 10 (End point)

ex. "End point #1"

(2). Kinetic

"Kinetic # " <memory number>" <cr>

1 or 2 (Kinetic)

<data exist>: "Exist: "<exist><cr>

<exist>: Exist = "1", No exist= "0"

ex. "Exist: 1"

ex. "01/01/2003 01:05:02"

### 1-6-2. Full Data Type Format of the Upload Raw Plate Data

### 1-6-2-1. Full Data Type Format for End point

<upl><upload raw plate data>: <memory #><data exist><date time><reading info>

<Mes. data><cr>

[<Ref. data><cr>] --- Ref.data present only for dual wavelength reading.

<memory #><data exist><date time>: Same as "1-6-1. Header Type Format of the Upload Raw Plate Data"

<reading info>: "Protocol #: "<protocol number><cr>

of to 64

"Kit name: "<kit name><cr>

<kit name>: Max 15 char

"Mes. filter:"<measurement filter wavelength data><space>"("<filter number>")"<cr>

<wavelength data>: 400 to 750 <filter number>: 1 to 8

"Ref. filter:"<reference filter wavelength data><space>"("<filter number>")"<cr>

Only when Dual wavelength reading

<Mes. data><cr>[<Ref. data><cr>]: Same as Abs. Data (See "1-3. Absorbance Data Format")

### 1-6-2-2. Full Data Type Format for Kinetic

```
<upl><upload raw plate data>: <memory #><data exist><date time><plate #>< <reading info> | <plate info></pl>
                        <Mes. data><cr>
                        [<Ref. data><cr>] > --- Ref.data present only for dual wavelength reading.
<memory #><data exist><date time>: Same as "1-6-1. Header Type Format of the Upload Raw Plate Data"
<plate #>: 0 to 30
               "0": It only generates < reading info>.
               "1" to "30": this number generates each plate data.
(1). <plate #>= 0
<reading info>: "Protocol #: "<protocol number><cr>
                            col number>: 65 to 66
                "Kit name: "<kit name><cr>
                           <kit name>: Max 15 char
               "Shaking mode: "<shaking mode><cr>
                            <shaking mode>: "No" / "Before 1sr read" / "Before every read"
               "Shaking speed: "<shaking speed><cr>
                            <shaking speed>: "Low" / "Middle" / "High"
               "Shaking time: "<shaking time><cr>
                            <shaking time>: 0 to 999
               "Number of reads: "<# of reads><cr>
                            <# of reads>: 2 to 30
               "Read interval: "<interval 1><space><interval 2><space>... <interval 29><cr>
                           interval time: 6 to 1029
               "Mes. filter: "<measurement filter wavelength data><space>"("<filter number>")"<cr>
                            <wavelength data>: 400 to 750 for Model 680
                            <filter number>: 1 to 8
               "Ref. filter:"<reference filter wavelength data><space>"("<filter number>")"<cr>
                        Only when Dual wavelength reading
(2). <plate #>= 1 to 30
```

"Plate #: "<plate number><cr> <plate info>:

<date time><cr>

<Mes. data><cr>[<Ref. data><cr>]: Same as Abs. Data (See "1-3. Absorbance Data Format")

### 1-7. Download Raw Plate Data Format

All protocol data is ASCII code data.

Transmit format: <","(0x2c)><plate datum 1><","><plate datum 2><",">>...<plate datum n><",">> ","(0x2c) delimits each parameters item.

### 1-7-1. End point's Download Raw Plate Data Format

The assignment of the Download Raw Plate Data format of End point:

|    | ne assignment of the Download Raw Plate Data format of End point: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|----|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| #  | Item of the plate datum                                           | Details                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| 1  | Plate data mode                                                   | "0"(End point), "1"(Kinetic)                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| 2  | Memory number                                                     | "1" to "10" (End point), "1" or "2" (Kinetic)                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 3  | Kit name [16]                                                     | ASCII characters (max 15characters + null code)                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| 4  | Plate reading mode (S/D)                                          | Plate reading mode ("0": Single / "1": Dual)                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| 5  | Measurement wavelength                                            | Model 680: "400" to "750"nm                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| 6  | Reference wavelength                                              | Model 680: "400" to "750"nm A space character (0x20) is available for Single reading.                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| 7  | Measurement filter number                                         | "1" to "8"                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| 8  | Reference filter number                                           | "1" to "8" A space character (0x20) is available for Single reading.                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| 9  | Protocol number                                                   | "1" to "64" (End point), "65" or "66" (Kinetic)                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| 10 | Plate reading date                                                | <pre><year>"/"<month>"/"<day><space><hour>":"<minutes>":"<seconds></seconds></minutes></hour></space></day></month></year></pre>                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 11 | Begin of <mes. data=""></mes.>                                    | "begin"                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| 12 | <mes. data=""></mes.>                                             | <pre><mes.data>: Abs. Data (See below "Abs. Data Sample") Measurement wavelength absorbance values are in ASCII encoded floating point format. Ex. 0.000 Each absorbance value is separated by a space, but in case of minus value, a minus sign is put instead. Each row of 12 well values is separated by a comma (,). &lt;8 rows of 12 wells of abs. values&gt;: Row1=wells (A1 to A12)"," Row2=wells (B1 to B12)"," Row8=wells (H1 to H12)</mes.data></pre> |  |  |  |  |
| 13 | End of <mes. data=""></mes.>                                      | "end"                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| 14 | Begin of <ref. data=""></ref.>                                    | "begin", put only for dual wavelength reading                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 15 | <ref. data=""></ref.>                                             | <pre><ref.data>: Abs. data, put only for dual wavelength reading (See below "Abs. Data Sample") &lt;8 rows of 12 wells of abs. values&gt;: Row1=wells (A1 to A12)"," Row2=wells (B1 to B12)"," Row8=wells (H1 to H12)</ref.data></pre>                                                                                                                                                                                                                          |  |  |  |  |
| 16 | End of <ref. data=""></ref.>                                      | "end", put only for dual wavelength reading                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |

Abs. Data Sample of <Mes. data> and <Ref. data>

- " 0.101 0.102 0.103 0.104 0.105 0.106 0.107 0.108 0.109 0.110 0.111 0.112"<",">
- " 0.201 0.202 0.203 0.204 0.205 0.206 0.207 0.208 0.209 0.210 0.211 0.212"<",">
- " 0.301 0.302 0.303 0.304 0.305 0.306 0.307 0.308 0.309 0.310 0.311 0.312"<",">
- " 0.401 0.402 0.403 0.404 0.405 0.406 0.407 0.408 0.409 0.410 0.411 0.412"<",">
- " 0.501 0.502 0.503 0.504 0.505 0.506 0.507 0.508 0.509 0.510 0.511 0.512"<",">
- " 0.601 0.602 0.603 0.604 0.605 0.606 0.607 0.608 0.609 0.610 0.611 0.612"<",">
- " 0.701 0.702 0.703 0.704 0.705 0.706 0.707 0.708 0.709 0.710 0.711 0.712"<",">
- " 0.801 0.802 0.803 0.804 0.805 0.806 0.807 0.808 0.809 0.810 0.811 0.812"

### Example:

eia.reader DRPD ,0,1,End point #1 ,0,415, ,2, ,1,03/2/18 14:00:00,begin, 0.101 0.102 0.103 0.104 0.105 0.106 0.107 0.108 0.109 0.110 0.111 0.112, 0.201 0.202 0.203 0.204 0.205 0.206 0.207 0.208 0.209 0.210 0.211 0.212, 0.301 0.302 0.303 0.304 0.305 0.306 0.307 0.308 0.309 0.310 0.311 0.312, 0.401 0.402 0.403 0.404 0.405 0.406 0.407 0.408 0.409 0.410 0.411 0.412, 0.501 0.502 0.503 0.504 0.505 0.506 0.507 0.508 0.509 0.510 0.511 0.512, 0.601 0.602 0.603 0.604 0.605 0.606 0.607 0.608 0.609 0.610 0.611 0.612, 0.701 0.702 0.703 0.704 0.705 0.706 0.707 0.708 0.709 0.710 0.711 0.712, 0.801 0.802 0.803 0.804 0.805 0.806 0.807 0.808 0.809 0.810 0.811 0.812,end,

### 1-7-2. Kinetic's Download Raw Plate Data Format

The assignment of the Download Raw Plate Data format of Kinetic:

| #   | Item of the plate datum   | Details                                                                                                                                                                                                                                                                                   |
|-----|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | Plate data mode           | "0"(End point), "1"(Kinetic)                                                                                                                                                                                                                                                              |
| 2   | Memory number             | "1" to "10" (End point), "1" or "2" (Kinetic)                                                                                                                                                                                                                                             |
| 3   | Total number of reads     | "2" to "30"                                                                                                                                                                                                                                                                               |
| 4   | Reading number            | <ul> <li>"0", "1" to "30"</li> <li>(1). The number 0 means that the successive data from here are the reading condition.</li> <li>(2). The number 1 to 30 means the reading number of the series of Kinetic readings.</li> <li>It should not exceed the total number of reads.</li> </ul> |
| (1) | Reading number = "0"      |                                                                                                                                                                                                                                                                                           |
| 5   | Kit name [16]             | ASCII characters (max 15characters)                                                                                                                                                                                                                                                       |
| 6   | Plate reading mode (S/D)  | Plate reading mode ("0": Single / "1": Dual)                                                                                                                                                                                                                                              |
| 7   | Measurement wavelength    | Model 680: "400" to "750"nm                                                                                                                                                                                                                                                               |
| 8   | Reference wavelength      | Model 680: "400" to "750"nm A space character (0x20) is available for Single reading.                                                                                                                                                                                                     |
| 9   | Measurement filter number | "1" to "8"                                                                                                                                                                                                                                                                                |
| 10  | Reference filter number   | "1" to "8" A space character (0x20) is available for Single reading.                                                                                                                                                                                                                      |
| 11  | Protocol number           | "1" to "64" (End point), "65" or "66" (Kinetic)                                                                                                                                                                                                                                           |
| 12  | Shaking mode              | "0"(disable), "1"(before 1st read), "2"(before every read)                                                                                                                                                                                                                                |
| 13  | Shaking speed             | "0"(low), "1"(Middle), "2"(High)                                                                                                                                                                                                                                                          |
| 14  | Shaking time              | "0" to "999" sec                                                                                                                                                                                                                                                                          |
| 15  | Start delay               | "0" to "999" sec                                                                                                                                                                                                                                                                          |
| 16  | Reading interval [29]     | "6" to "1029" sec for Model 680<br>Interval time values must be separated by a space code.<br>1-2,2-3,3-4,4-5,5-6,6-7,7-8,8-9,9-10,10-11,11-12,12-13,13-14,14-1<br>5,15-16,16-17,17-18,18-19,19-20,20-21,21-22,22-23,23-24,24-25,<br>25-26,26-27,27-28,28-29,29-30                        |

| (2) | (2) Reading number= "1" to "30" |                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|-----|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 5   | Plate reading date              | <pre><year>"/"<month>"/"<day><space><hour>":"<minutes>":"<second s=""></second></minutes></hour></space></day></month></year></pre>                                                                                                                                                                                                                                                                                                            |  |  |  |
| 6   | Begin of <mes. data=""></mes.>  | "begin"                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| 7   | <mes. data=""></mes.>           | <mes.data>: Abs. Data (See "Abs. Data Sample") Measurement wavelength absorbance values are in ASCII encoded floating point format. Ex. 0.000 Each absorbance value is separated by a space, but in case of minus value, a minus sign is put instead. Each row of 12 well values is separated by a comma (,). &lt;8 rows of 12 wells of abs. values&gt;: Row1=wells (A1 to A12)"," Row2=wells (B1 to B12)"," Row8=wells (H1 to H12)</mes.data> |  |  |  |
| 8   | End of <mes. data=""></mes.>    | "end"                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| 9   | Begin of <ref. data=""></ref.>  | "begin", put only for dual wavelength reading                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 10  | <ref. data=""></ref.>           | <ref.data>: Abs. data, put only for dual wavelength reading (See "Abs. Data Sample") &lt;8 rows of 12 wells of abs. values&gt;: Row1=wells (A1 to A12)"," Row2=wells (B1 to B12)"," Row8=wells (H1 to H12)</ref.data>                                                                                                                                                                                                                          |  |  |  |
| 11  | End of <ref. data=""></ref.>    | "end", put only for dual wavelength reading                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |

#### Example:

eia.reader DRPD ,1,1,10,1,03/3/19 15:00:00,begin, 0.101 0.102 0.103 0.104 0.105 0.106 0.107 0.108 0.109 0.110 0.111 0.112, 0.201 0.202 0.203 0.204 0.205 0.206 0.207 0.208 0.209 0.210 0.211 0.212, 0.301 0.302 0.303 0.304 0.305 0.306 0.307 0.308 0.309 0.310 0.311 0.312, 0.401 0.402 0.403 0.404 0.405 0.406 0.407 0.408 0.409 0.410 0.411 0.412, 0.501 0.502 0.503 0.504 0.505 0.506 0.507 0.508 0.509 0.510 0.511 0.512, 0.601 0.602 0.603 0.604 0.605 0.606 0.607 0.608 0.609 0.610 0.611 0.612, 0.701 0.702 0.703 0.704 0.705 0.706 0.707 0.708 0.709 0.710 0.711 0.712, 0.801 0.802 0.803 0.804 0.805 0.806 0.807 0.808 0.809 0.810 0.811 0.812,end,

### 7.3.2 Error Codes

| Error code | Error                           | Cause                                                 | Recovery         |
|------------|---------------------------------|-------------------------------------------------------|------------------|
| 0000       | No error                        |                                                       |                  |
| 8071       | Invalid Command                 | The received data is not a command for the instrument |                  |
| 8072       | Parameter out of range          | The received parameter is out of range                |                  |
| 8073       | Device Not In Remote<br>Mode    | The instrument is not in remote mode                  |                  |
| 8074       | Device busy                     | The instrument is doing a job.                        |                  |
| 8075       | Filter wheel                    | Filter wheel jammed.                                  | "reset" command. |
| 8076       |                                 |                                                       |                  |
| 8077       | Light bulb burned out           | Insufficient light level                              | "reset" command. |
| 8078       |                                 |                                                       |                  |
| 8079       |                                 |                                                       |                  |
| 8080       |                                 |                                                       |                  |
| 8081       |                                 |                                                       |                  |
| 8082       |                                 |                                                       |                  |
| 8083       | Incubator error                 | Incubator over heat.                                  |                  |
| 8084       | Plate carrier error-1           | Plate carrier home sensor closed status error         | "reset" command. |
| 8085       | Plate carrier error-2           | Plate carrier home sensor open status error           | "reset" command. |
| 8086       | Plate carrier error-3           | Plate carrier jammed before reading                   | "reset" command. |
| 8087       | Plate carrier Position          | Plate carrier jammed after reading                    | "reset" command. |
| 8088       | Light level error               | There is too big difference of light between channels | "reset" command. |
| 8089       | Filter missing                  | Light is exceeding allowable range                    | "reset" command. |
| 8090       | Disagreement of security status | The security status from P.C was disagreement.        |                  |
| 8091       | RS232C error                    | RS232C hardware error                                 |                  |
| 8092       | A/D converter error             | Malfunction of A/D converter.                         | "reset" command. |
| 8093       | Measurement stop by stop key    | The user input "stop" key during measurement.         | "reset" command. |



Bio-Rad Laboratories, Inc.

Life Science Group Web site www.blo-rad.com USA (800) 4BIORAD Australia 02 9914 2800 Austria (01)-877 89 01 Beiglum 09-385 55 11 Brazil 55 21 2527 3454 Canada (905) 712-2771 China (86 21) 6426 0808 Czech Republic + 420 2 41 43 05 32 Denmark 44 52 10 00 Finland 09 804 22 00 France 01 47 95 69 65 Germany 089 318 84-0 Greece 30 210 777 4396 Hong Kong (852) 2789 3300 Hungary 36 1 455 8800 India (91-124)-2398112/3/4, 5018111, 6450092/93 Iarael 03 951 4127 Italy 39 02 216091 Japan 03-5811-6270 Korea 82-2-3473-4460 Latin America 305-894-5950 Mexico 55-52-00-65-20 The Notherlands 0318-54066 New Zeeland 64 9 415 2280 Norway 23 38 41 30 Poland + 48 22 331 99 99 Portugal 351-21-472-7700 Russia 7 095 721 1404 Singapore 65-64153188 South Africa 00 27 11 4428508 Spain 34 91 590 52 00 Sweden 08 555 12700 Switzerland 061 717 95 55 Talwan (886 2) 2578 7189/2578 7241 United Kingdom 020 8328 2000