Ordering Information

K20-00003 ProteinChip CM Low-Stringency Buffer, 200 ml C57-30075 ProteinChip CM10 Arrays, A-H format, 12
C50-30011 ProteinChip Cassette-Compatible Bioprocessor, includes ProteinChip array forceps, cassette hold-down frame, 12 blank ProteinChip arrays
C30-00001 ProteinChip CHCA Energy Absorbing Molecules
(EAMs), $5 \mathrm{mg} / \mathrm{vial}, 20$
C30-00002 ProteinChip SPA Energy Absorbing Molecules ProteinChip SPA Ener
(EAMs), $5 \mathrm{mg} / \mathrm{vial}, 20$
C30-00003 ProteinChip EAM-1 Energy Absorbing Molecules (EAMs), $5 \mathrm{mg} / \mathrm{vial}, 20$

The SELDI process is covered by US patents $5,719,060,6,225,047$, 6,579,719, and 6,818,411 and other issued patents and pending applications in the US and other jurisdictions.

ProteinChip ${ }^{\circ} \mathrm{CM}$
 Low-Stringency Buffer

E/O-2MD Bio-Rad

Laboratories, Inc.

Life Science Group	Web site www.bio-rad.com USA 800 4BIORAD Australia 610299142800 Austria 018778901 Belgium 093855511 Brazil 552132379400 Canada 9057122771 China 862164260808 Czech Republic 420241430532 Denmark 44521000 Finland 098042200 France 0147956965 Germany 089318840 Greece 302107774396 Hong Kong 85227893300 Hungary 3614558800 India 911244029300 Israel 039636050 Italy 3902216091 Japan 0358116270 Korea 82234734460 Mexico 525554887670 The Netherlands 0318540666 New Zealand 0508805500 Norway 23384130 Poland 48223319999 Portugal 351214727700 Russia 74957211404 Singapore 6564153188 South Africa 27861246723 Spain 34915905200 Sweden 0855512700 Switzerland 0617179555 Taiwan 886225787189 United Kingdom 02083282000

Instruction Manual

Catalog \#K20-00003

For technical support, call your local Bio-Rad office, or in the US, call 1-800-4BIORAD (1-800-424-6723).

Uses

- Protein profiling and biomarker discovery
- Rapid protein analysis to determine purity, mass confirmation, or both

Introduction

ProteinChip CM low-stringency buffer is designed to for use with the ProteinChip CM10 array (catalog \#C57-30075). The ProteinChip CM array incorporates a carboxylate chemistry (negatively charged) that acts as a weak cation exchanger. The carboxymethyl (CM) surface binds proteins that are positively charged at a given pH . To control selectivity, the pH of the binding buffer is increased or decreased, depending on the need. By using the low-pH ProteinChip CM lowstringency buffer, an overall net positive charge is imparted on a greater number of proteins within the sample, resulting in more proteins binding. By increasing the pH of the binding and wash buffer, an overall net negative charge is imparted on some of the proteins, resulting in fewer proteins binding, i.e., higher stringency.

Storage

Store buffer at $2-8^{\circ} \mathrm{C}$.

Buffer Composition

0.1 M sodium acetate, pH 4.0, antimicrobial preservatives, 200 ml - Amount is sufficient to run 12 ProteinChip arrays in a ProteinChip bioprocessor using binding and elution buffer volumes as outlined in the suggested protocol.

Suggested Protocol

1. Assemble the ProteinChip arrays in the ProteinChip cassette-compatible bioprocessor (catalog \#C50-30011).
2. Add $150 \mu \mathrm{l}$ of ProteinChip CM low-stringency buffer to each well. Vortex for 5 minutes at room temperature.
3. Remove buffer from the wells.
4. Repeat steps 2-3 for a total of two washes.
5. Add 90μ l of ProteinChip CM low-stringency buffer to each well.
6. Add 10μ l of the sample to each well. Vortex for 30 minutes at room temperature.
7. Remove samples from wells.
8. Wash each well with 150μ l ProteinChip CM low-stringency buffer for 5 minutes, with agitation. Repeat twice for a total of three buffer washes.
9. Remove wash buffer from wells and rinse each well with deionized water.
10. Drain wells and remove arrays from the ProteinChip bioprocessor.
11. Allow arrays to air-dry.
12. Apply 1.0μ l ProteinChip energy absorbing molecule (EAM) solution per spot. Two applications of EAM solution can be used in order to increase signal intensity. Allow arrays to air-dry.
13. Analyze the arrays using the ProteinChip SELDI reader.
