New Paper Shows How to Design a Foolproof Quantitative Western Blot Experiment that Avoids Common Pitfalls

Date: 
2014-03-31

Hercules, CA — March 31, 2014 — A methods article published today provides a rigorous and concise workflow with specific instructions on how to produce and analyze quantitative data using western blot experiments. The paper, coauthored by Bio-Rad scientists and published in BioMed Research International, also highlights recently introduced technologies that improve reproducibility. The result is a powerful, step-by-step guide to obtaining quantitative and reproducible densitometric data from western blots regardless of the specific experiment.

Although western blotting is a well-established laboratory technique, it has recently come under fire as a quantitative method because extreme care must be taken when generating and interpreting the resulting data.

The technique is challenging and requires following a rigorous methodology to achieve reproducible and quantitative data. According to a recent survey of more than 750 labs, 41% of researchers say their western blots fail a quarter of the time.

Dr. Aldrin Gomes, an assistant professor at University of California, Davis, agrees that flawed western blots are not unusual. To compare expression of a protein of interest from sample to sample, protein abundance is commonly normalized to a housekeeping gene. “When I see a large, dense band for the protein of interest or the housekeeping protein, I cringe,” says Gomes. That dense band usually means the protein of interest or housekeeping protein was no longer within the assay’s linear dynamic range. No accurate quantitative data can be extracted from such blots.


Sean Taylor discusses the BioMed Research International paper he coauthored.

Another common reason for failure of quantitative western blots is flawed or incomplete protocols, according to Sean Taylor, the paper’s lead author and a Bio-Rad field application scientist (watch a video of him discussing the paper on the left). To address this, Taylor’s review pays special attention to experimental design and sample preparation and discusses proper definition of the linear dynamic range of protein loading, all key factors for generating meaningful quantitative western blot data.

Taylor also introduces more advanced concepts to improve reproducibility, simplify workflow, and reduce the time and cost of western blotting. One such technique is stain-free total protein normalization, which over the past year has proven superior to using housekeeping proteins or total protein staining to correct for loading errors.

With this article, Taylor hopes researchers now have a simple guide to ensure quantitative and reproducible western blot data for all research fields that rely on this technique.

To read the open access research article, visit http://bit.ly/1kCAOcr.

For additional resources please consult Bio-Rad’s guide to Troubleshooting Western Blots.

About Bio-Rad
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb) designs, manufactures, and distributes a broad range of innovative products and solutions for the life science research and clinical diagnostic markets. The company is renowned for its commitment to quality and customer service among university and research institutions, hospitals, public health and commercial laboratories, as well as the biotechnology, pharmaceutical, and food safety industries. Founded in 1952, Bio-Rad is based in Hercules, California, and serves more than 100,000 research and healthcare industry customers through its global network of operations. The company employs approximately 7,750 people worldwide and had revenues exceeding $2 billion in 2013. For more information, visit our website at www.bio rad.com.

This release contains certain forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995 and Section 21E of the Securities Exchange Act of 1934. Forward-looking statements generally can be identified by the use of forward-looking terminology such as, “believe,” “expect,” “may,” “will,” “intend,” “estimate,” “continue,” or similar expressions or the negative of those terms or expressions. Such statements involve risks and uncertainties, which could cause actual results to vary materially from those expressed in or indicated by the forward-looking statements. For further information regarding the Company's risks and uncertainties, please refer to the “Risk Factors” in the Company’s public reports filed with the Securities and Exchange Commission, including the Company’s most recent Annual Report on Form 10-K, Quarterly Reports on Form 10-Q and Current Reports on Form 8-K. The Company cautions you not to place undue reliance on forward-looking statements, which reflect an analysis only and speak only as of the date hereof. Bio-Rad Laboratories, Inc., disclaims any obligation to update these forward-looking statements.

For more information contact:
Ning Liu
Bio-Rad Laboratories, Inc.
510-408-2149
Ning_Liu@bio-rad.com

Ken Li
Chempetitive Group
312-997-2436 x 112
kli@chempetitive.com