Chemical- and Viral-Based Transfection Methods

Print

Overview

en-us LUSOOP49 Chemical and Viral Based Chemical- and Viral-Based Transfection Methods /webroot/web/html/lsr/solutions/technologies/transfection <p>This section provides information on chemical transfection methods including liposome-meditated transfection, calcium phosphate, and viral mediated delivery.</p> <p><strong>Related Topics</strong>: <a href="/evportal/destination/solutions?catID=LUSONV30E">Instrument-Based Transfection Methods</a>, <a href="/evportal/destination/solutions?catID=LUSOPS84">Posttransfection Analysis of Cells</a>, and <a href="/evportal/destination/solutions?catID=LUSOLB470">Cell Counting Methods</a>.</p> Methods of Transfection <table class="pd_table pd_gridlines" border="0"> <tbody> <tr class="pd_colorbackground"> <td><strong>Method</strong></td> <td><strong>Function</strong></td> <td><strong>Recommended Cells</strong></td> <td><strong>Products</strong></td> </tr> <tr class="txttop"> <td>Lipid-mediated</td> <td>Uses lipids to cause a cell to absorb nucleic acids; transfer genetic material into the cell via liposomes, which are vesicles that can merge with the cell membrane</td> <td>Immortal cells, adherent (attached), or suspension cells</td> <td><a href="http://www.bio-rad.com/evportal/destination/commerce/product_detail?catID=680dace0-c2a1-451c-ba7f-d15a2294aa52">TransFectin&trade; Lipid Reagent<br /> <br /> </a><a href="http://www.bio-rad.com/evportal/destination/commerce/product_detail?catID=6860e063-0049-4607-95f9-03cae130b221">SiLentFect&trade; Lipid Reagent for RNAi</a></td> </tr> <tr class="txttop"> <td>Viral vector (for example, retrovirus, lentivirus, adenovirus, or adeno-associated viruses)</td> <td>Uses viral vectors to deliver nucleic acids into cells</td> <td>Attached adherent cells, stem cells, primary cells</td> <td>&nbsp;</td> </tr> </tbody> </table> <p>&nbsp;</p> <table class="pd_table pd_gridlines" border="0"> <tbody> <tr class="pd_colorbackground"> <td colspan="3"><strong>Advantages and Disadvantages of the Different Transfection Methods</strong></td> </tr> <tr class="pd_colorbackground"> <td>&nbsp;</td> <td><strong>Advantages</strong></td> <td><strong>Disadvantages</strong></td> </tr> <tr class="txttop"> <td valign="top">Lipid Mediated</td> <td valign="top"> <ul> <li style="border:0px">Efficiency &mdash; effectively deliver nucleic acids to cells in a culture dish</li> <li style="border:0px">Minimal toxicity &mdash; deliver the nucleic acids with low cell death or little decrease in metabolism</li> <li style="border:0px">Activity &mdash; transfected nucleic acids lead to measurable change</li> <li style="border:0px">Easy to use &mdash; minimal steps required; adaptable to high-throughput systems</li> <li style="border:0px">Economical &mdash; a more active lipid will reduce the cost of lipid and nucleic acid, and achieve effective results</li> </ul> </td> <td valign="top"> <ul> <li style="border:0px">Not applicable to all cell types &mdash; some cell lines are unable to transfect with lipids</li> </ul> </td> </tr> <tr class="txttop"> <td valign="top">Viral Mediated</td> <td valign="top"> <ul> <li style="border:0px">Very high gene-delivery efficiency, 95&ndash;100%</li> <li style="border:0px">Simplicity of infection</li> </ul> </td> <td valign="top"> <ul> <li style="border:0px">Labor intensive</li> <li style="border:0px">Best for introducing a single cloned gene that is to be highly expressed</li> <li style="border:0px">P2 containment required for most viruses <ul> <li style="border:0px">Institutional regulation and review boards required</li> <li style="border:0px">Viral transfer of regulatory genes or oncogenes is inherently dangerous and should be carefully monitored</li> <li style="border:0px">Host range specificity may not be adequate</li> </ul> </li> <li style="border:0px">Many viruses are lytic</li> <li style="border:0px">Need for packaging cell lines</li> </ul> </td> </tr> <tr class="txttop"> <td valign="top">Calcium Phosphate</td> <td valign="top"> <ul> <li style="border:0px">Inexpensive</li> <li style="border:0px">High-efficiency cell type dependent</li> <li style="border:0px">Can be applied to a wide range of cell types</li> <li style="border:0px">Can be used for transient and stable transfection</li> </ul> </td> <td valign="top"> <ul> <li style="border:0px">Reagent consistency is critical for reproducibility</li> <li style="border:0px">Small pH changes (&plusmn;0.1) can compromise the efficacy</li> <li style="border:0px">Size and quality of the precipitate are crucial to the success</li> of transfection <li style="border:0px">Calcium phosphate precipitation does not work in RPMI, due to the high concentration of phosphate within the medium</li> </ul> </td> </tr> <tr class="txttop"> <td valign="top">DEAE-Dextran</td> <td valign="top"> <ul> <li style="border:0px">Inexpensive</li> <li style="border:0px">Easy to perform and quick</li> <li style="border:0px">Can be applied to a wide range of cell types</li> </ul> </td> <td valign="top"> <ul> <li style="border:0px">High concentrations of DEAE-dextran can be toxic to cells</li> <li style="border:0px">Transfection efficiencies will vary with cell type</li> <li style="border:0px">Can only be used with transient transfection</li> <li style="border:0px">Typically produces less than 10% delivery in primary cells</li> </ul> </td> </tr> <tr class="txttop"> <td valign="top">Magnet Mediated</td> <td valign="top"> <ul> <li style="border:0px">Rapid </li> <li style="border:0px"> Increased transfection efficiency by the directed transport, especially for low amounts of nucleic acids</li> <li style="border:0px"> High transfection rates for adherent mammalian cell lines and primary cell cultures (suspension cells and cells from other organisms also successfully transfected but need to be immortalized)</li> <li style="border:0px"> Mild treatment of cells</li> <li style="border:0px"> Can also be performed in the presence of serum</li> </ul> </td> <td valign="top"> <ul> <li style="border:0px">Relatively new method</li> <li style="border:0px"> Requires adherent cells; suspension cells need to be immobilized or centrifuged</li> </ul> </td> </tr> </tbody> </table> <p>The following table summarizes how common lipid and viral methods work.</p> <table class="pd_table pd_gridlines" border="0"> <tbody> <tr class="pd_colorbackground"> <td><strong>Protocols for Different Transfection Methods</strong></td> <td></td> </tr> <tr class="pd_colorbackground"> <td><strong>Lipid-Mediated</strong></td> <td></td> </tr> <tr> <td> <ul> <li style="border:0px">Cationic lipids are amphiphilic molecules that have a positively charged polar head group linked, via an anchor, to a nonpolar hydrophobic domain generally comprised of two alkyl chains</li> <li style="border:0px">Structural variations in the hydrophobic domain of cationic lipids include the length and the degree of non-saturation of the alkyl chains</li> <li style="border:0px">Electrostatic interactions between the positive charges of the cationic lipid head groups and the negatively charged phosphates of the DNA backbone are the main forces that allow DNA to spontaneously associate with cationic lipids</li> </ul> </td> <td></td> </tr> <tr class="pd_colorbackground"> <td><strong>Viral Mediated</strong></td> <td></td> </tr> <tr class="txttop"> <td><strong>RNA Viruses</strong> <ul> <li style="border:0px"><strong>Retroviruses</strong> &mdash; a class of viruses that can create double-stranded DNA copies of their RNA genomes; these copies can be integrated into the chromosomes of host cells. Examples include: <ul> <li style="border:0px">Murine leukemia virus (MuLV)</li> <li style="border:0px">Human immunodeficiency virus (HIV)</li> <li style="border:0px">Human T-cell lymphotropic virus (HTLV)</li> </ul> </li> </ul> <strong>DNA Viruses</strong><br /> <ul> <li style="border:0px"><strong>Adenoviruses</strong> &mdash; a class of viruses with double-stranded DNA genomes that cause respiratory, intestinal, and eye infections in humans; the virus that causes the common cold is an adenovirus</li> <li style="border:0px"><strong>Adeno-associated viruses</strong> &mdash; a class of small, single-stranded DNA viruses that can insert their genetic material at a specific site on chromosome 19</li> <li style="border:0px"><strong>Herpes simplex viruses</strong> &mdash; a class of double-stranded DNA viruses that infect a particular cell type, neurons; herpes simplex virus type 1 is a common human pathogen that causes cold sores</li> </ul> <br /> <p><img src="/webroot/web/images/lsr/solutions/technologies/gene_expression/pcr/technology_detail/gxt42_img1.jpg" alt="" width="449" height="436" /></p> <p class="caption"><strong>Viral Transfection workflow.</strong></p> </td> <td></td> </tr> <tr class="pd_colorbackground"> <td><strong>Calcium Phosphate</strong></td> <td></td> </tr> <tr> <td> <p>The protocol involves mixing DNA with calcium chloride, adding the mixture in a controlled manner to a buffered saline/phosphate solution, and allowing the mixture to incubate at room temperature.</p> <p>This step generates a precipitate that is dispersed onto the cultured cells. The precipitate is taken up by the cells via endocytosis or phagocytosis.</p> <p><img src="/webroot/web/images/lsr/solutions/technologies/gene_expression/pcr/technology_detail/gxt42_img2.jpg" alt="" width="331" height="310" /></p> <p class="caption"><strong>Intercalation of Ca<sup>++</sup> ions.</strong></p> <p><strong>Protocol</strong></p> <p>Solution A: DNA in calcium solution<br /> Solution B: 2x Hanks buffered saline solution</p> <ul> <li style="border:0px">Add solution A to solution B while vortexing</li> <li style="border:0px">Incubate 20&ndash;30 min. Apply the solution to the subconfluent cell culture</li> <li style="border:0px">Incubate 2&ndash;12 hr. Replace the solution with complete growth medium</li> <li style="border:0px">Assay for transient gene expression or begin selection for stable transformation</li> </ul> <p><img src="/webroot/web/images/lsr/solutions/technologies/gene_expression/pcr/technology_detail/gxt42_img3.jpg" alt="" width="234" height="393" /></p> </td> <td></td> </tr> <tr class="pd_colorbackground"> <td><strong>Cationic Polymers</strong></td> <td></td> </tr> <tr> <td> <p>Cationic polymers differ from cationic lipids in that they do not contain a hydrophobic moiety and are completely soluble in water. Given their polymeric nature, cationic polymers can be synthesized in different lengths, with different geometry (linear versus branched). The most striking difference between cationic lipids and cationic polymers is the ability of the cationic polymers to more efficiently condense DNA.</p> <p>There are three general types of cationic polymers used in tranfections:</p> <ul> <li style="border:0px">Linear (histone, spermine, and polylysine)</li> <li style="border:0px">Branched</li> <li style="border:0px">Spherical </li> </ul> <p>Cationic polymers include polyethyleneimine (PEI) and dendrimers.</p> <br /></td> <td></td> </tr> <tr class="pd_colorbackground"> <td><strong>DEAE-Dextran</strong></td> <td></td> </tr> <tr> <td> <p>DEAE-dextran is a cationic polymer that tightly associates with negatively charged nucleic acids. The positively charged DNA:polymer complex comes into close association with the negatively charged cell membrane. DNA:polymer complex uptake into the cell is presumed to occur via endocytosis.</p> <p><img src="/webroot/web/images/lsr/solutions/technologies/gene_expression/pcr/technology_detail/gxt42_img4.jpg" alt="" width="426" height="168" /></p> <p><strong>Protocol</strong></p> <p>Solution A: DNA (~1&ndash;5 &micro;g/ml) diluted into 2 ml of growth medium with serum containing chloroquine<br /> Solution B: DEAE-dextran solution (~50&ndash;500 ug/ml)<br /> Solution C: ~5 ml of DMSO<br /> Solution D: Complete growth medium</p> <ul> <li style="border:0px">Add solution A to solution B, then mix gently</li> <li style="border:0px">Aspirate cell medium and apply the mixed A and B solutions to the subconfluent cell culture. Incubate the DNA mixture for ~4 hr; check periodically for cell health</li> <li style="border:0px">Aspirate the supernatant</li> <li style="border:0px">Add solution C to induce DNA uptake</li> <li style="border:0px">Remove DMSO and replace with solution D; assay for transient gene expression</li> </ul> <p><img src="/webroot/web/images/lsr/solutions/technologies/gene_expression/pcr/technology_detail/gxt42_img5.jpg" alt="" width="123" height="419" /></p> </td> <td></td> </tr> <tr class="pd_colorbackground"> <td><strong>Activated Dendrimers</strong></td> <td></td> </tr> <tr> <td> <p>Positively charged amino groups (termini) on the surface of the dendrimer molecule interact with the negatively charged phosphate groups of the DNA molecule to form a DNA-dendrimer complex.</p> <p>The DNA-dendrimer complex has an overall positive net charge and can bind to negatively charged surface molecules on the membrane of eukaryotic cells. Complexes bound to the cell surface are taken into the cell by nonspecific endocytosis. Once inside the cell, the complexes are transported to the endosomes.</p> <ol style="width: 550px;"> </ol> <ul> <li style="border:0px">DNA is protected from degradation by endosomal nucleases by being highly condensed within the DNA-dendrimer complex.</li> <li style="border:0px">Amino groups on the dendrimers that are unprotonated at neutral pH can become protonated in the acidic environment of the endosome. This leads to buffering of the endosome, which inhibits pH-dependent endosomal nucleases.</li> </ul> <ol style="width: 550px;"> </ol> <p style="clear: both;"><img src="/webroot/web/images/lsr/solutions/technologies/gene_expression/pcr/technology_detail/gxt42_img6.jpg" alt="" width="425" height="345" /></p> <p class="caption"><strong>Dendrimer molecule.</strong></p> </td> <td></td> </tr> <tr class="pd_colorbackground"> <td><strong>Magnet-Mediated Transfection</strong></td> <td></td> </tr> <tr> <td> <p>Magnet-mediated transfection uses magnetic force to deliver nucleic acids into target cells. Therefore, nucleic acids are first associated with magnetic nanoparticles. Then, application of magnetic force drives the nucleic acid-particle complexes towards and into the target cells, where the cargo is released.</p> <p><img src="/webroot/web/images/lsr/solutions/technologies/gene_expression/pcr/technology_detail/gxt42_img7.jpg" alt="" width="305" height="328" /></p> <p class="caption"><strong>Magnet-mediated transfection.</strong></p> </td> <td></td> </tr> </tbody> </table> <div class="top"><a href="#helptop">Back to Top</a></div> Transfection Protocols <p> <script type="text/javascript"><!-- // popupwin function popIt(url,w,h,r){ var mydate = new Date(); wname=''+mydate.getMonth()+mydate.getDate()+mydate.getHours()+mydate.getMinutes()+mydate.getSeconds(); if (w && h && r) { popwin = window.open(url,"popwin"+wname,"height="+h+",width="+w+",status=1,scrollbars=1,location=1,menubar=1,resizable"); } else { popwin = window.open(url,"popwin"+wname,"height="+h+",width="+w+",status=1,scrollbars=1,location=0,resizable"); } } // --></script> </p> <p>The transfection protocol online library contains protocols obtained from the literature, developed by Bio-Rad scientists, or submitted by scientists like you. <a onclick="popIt('http://www.bio-rad.com/genetransferprotocols',1300,700);return false" href="#" target="_blank">Browse protocols</a> to view our library and find your starting point or submit a protocol by clicking the proper technology.</p> <div class="top"><a href="#helptop">Back to Top</a></div> Selection Guide <table id="carttablealigned" class="literature_table" style="height: auto; width: 583px;" border="0" cellspacing="0" cellpadding="0"> <tbody> <tr> <td width="100">6179</td> <td width="350">Lipid Transfection Reagents Selection Guide<br /></td> <td class="pdf"><a class="pdf" href="http://www.bio-rad.com/webroot/web/pdf/lsr/literature/Bulletin_6179.pdf" target="_blank"><span>Click to download</span></a></td> </tr> </tbody> </table> 5448 MicroPulser Electroporator Flier, Rev A 5448 /webroot/web/pdf/lsr/literature/Bulletin_5448.pdf Literature PDF Brochures_and_Specifications /webroot/web/images/general/icons/icon_pdf.gif No MicroPulser Electroporator Flier, Rev A 5448 165-2082, 165-2091, 1652081, 1652083, 1652092, ark, cuvettes, escherichia coli, fungi, schizosaccharomyces pombe, staphylococcus aureus, 165-2092, cuvette, e, electroporate, genepulser, microorganism, 165-2083, 1652082, 1652093, a, agrobacterium tumefaciens, d, microorganisms, transform, yeast, charge, electroporation, electropotators, LIT5448, micro pulser, pichia pastons, saccharomyces ceneisiae, transfection, transformation, 165-2089, 1652086, 1652088, chamber, p, s, 1652091, arc-quenching, arq, transfect, 165-2081, 165-2086, 165-2093, 1652089, bacteria, dictyostelium discoideum, micropulse, pulses, 165-2088, are quenching, field strength, gene transfer, programmable, pulse 5582 Gene Pulser Electroporation Buffer Product Information Sheet, Rev A 5582 /webroot/web/pdf/lsr/literature/Bulletin_5582.pdf Literature PDF Product_Information_Sheets /webroot/web/images/general/icons/icon_pdf.gif No Gene Pulser Electroporation Buffer Product Information Sheet, Rev A 5582 difficult-to-transfect, protocols, mammalian call line, primary cells, sirna transfection, 165-2676, waveform independence, 165-2677, difficult to transfect, electroporate, 1652676 1652677, cell viability, plasmid dna, protocol optimization, LIT5582, rnai, transfecting buffers, universal reagent, nucleic acid delivery 5399 5399 Gene Pulser siRNA Electroporation References, Rev A /webroot/web/pdf/lsr/literature/Bulletin_5399.pdf Literature PDF Application_Notes /webroot/web/images/general/icons/icon_pdf.gif No Gene Pulser siRNA Electroporation References, Rev A Life Science 5399 gene silencing, citations, published citation, xcell system, cultured cell, LIT5399, reference, transformation, cells, silencing rna, excel, gene transfer 5445 Gene Pulser Xcell Electroporation System Flier, Rev A 5445 /webroot/web/pdf/lsr/literature/Bulletin_5445.pdf Literature PDF Brochures_and_Specifications /webroot/web/images/general/icons/icon_pdf.gif No Gene Pulser Xcell Electroporation System Flier, Rev A 5445 165-2661, bacteria, cells, electroporator, exponential-decay, pulsetrac, 165-2667, 165-2669, 1652666, electroporators, 1652668, bacterial, dna, exponential decay, high voltage, high-voltage, prokaryote, pulse track, rna, 1652660, 1652662, LIT5445, nucleic acid, square wave, square-wave, transfection, 1652667, 1652669, fungi, mammalian cell, plants, shock-pod, 165-2660, 165-2662, eukaryote, genepulser, microbial, modular, shockpod, 165-2666, 1652661, acids, electro-poration, eukaryotic, fungal, plant, prokaryotic, transfect, 165-2668, eukaryotes, excel, prokaryotes, sirna 5598 Gene Pulser MXcell Electroporation System Flier, Rev B 5598 /webroot/web/pdf/lsr/literature/Bulletin_5598B.pdf Literature PDF Brochures_and_Specifications /webroot/web/images/general/icons/icon_pdf.gif No Gene Pulser MXcell Electroporation System Flier, Rev B 5598 165-2674, 165-2676, 1652676, protocols, 165-2673, primary cells, trans fection, 1652673, delivery, transfection efficiency, buffer, instrument specifications, trans-fection, 165-2670, 1652670, cell, protocol, ShockPod cuvette chamber, optimization, optimize, 1652674 5634 Gene Pulser MXcell Electroporation System Brochure, Rev A 5634 /webroot/web/pdf/lsr/literature/Bulletin_5634.pdf Literature PDF Brochures_and_Specifications /webroot/web/images/general/icons/icon_pdf.gif No Gene Pulser MXcell Electroporation System Brochure, Rev A 5634 plates, 5634, luciferase siRNA, plasmid delivery, LIT5634, preset protocols, well set, 5F2C, plate format, quick guide, HeLa, transfection conditions, Bulletin 5634, CHO cells, buffer, cell viability, square waveform, cell density, exponential decay waveform 1908 Electroporation Cuvette Flier, Rev B 1908 /webroot/web/pdf/lsr/literature/Bulletin_1908.pdf Literature PDF Product_Information_Sheets /webroot/web/images/general/icons/icon_pdf.gif No Electroporation Cuvette Flier, Rev B 1908 bulletin 1908, lit1908, bulletin 1908, transfection, trans-fection, genepulser, gene pulser, electroporation, electroporator, 165-2660, 165-2662, condition, protocol, shockpod, 1652661, efficiency, protocols, 1652081, 1652082, 1652083, 1652086, 1652088, 1652089, 1652091, 1652092, 1652093, 165-2661, pulsetrac, pulse trac, shock pod, 1652660, 1652662, 165-2660J1, 165-2661J1, 165-2662J1, 165-2666, 165-2666J1, 165-2667, 1652660J1, 1652661J1, 1652662J1, 1652666, 1652666J1, 1652667, 170-2503, 170-2503EDU, 170-2504, 170-2505, 1702503, 1702503EDU, 1702504, 1702505 5553 Gene Modulation Workflow Brochure, Rev B 5553 /webroot/web/pdf/lsr/literature/Bulletin_5553B.pdf Literature PDF Brochures_and_Specifications /webroot/web/images/general/icons/icon_pdf.gif No Gene Modulation Workflow Brochure, Rev B 5553 165-4000, 165-8000, 1652100, 170-8170, 1703940, 7007001, 732-6100, amplification, biolistics, CFD-3121, expression, GenePulser X-cell, multiplexing, PDS 1000-He, QuantumPrep, RT-PCR, sequencing, 1632086, 1632130, 1652431, 170-3351, 1709780, 1749950, 7326100, 7326343, BioOdyssey Calligrapher miniarrayer, CFB3120, interaction, Mini-PROTEAN Tetra cell, multi-color, PDS1000/He, PROTEAN IEF, quantification, quantitation, Ready Prep 2D, ReadyPrep 2-D cleanup kit, silent-mer dicer-substrate, silentfect RNAi, 165-3860, 165-3863, 1653861, 1653862, 1658000, 170-3940, 1703930, 1708170, 171-000201, 171-000205, 174-9950, 700-7000, 7007002, 732-6800, aqua-pure, blot, Gene Pulser Xcell total system, iso-electric, lipid mediated, microarray analysis, microarrays, mini-arrayer, multiplex suspension array technology, nucleic acid purification, reverse transcription, reverse-transcription, silent-fect, transfect, 165-2431, 165-2660, 170-3930, 1703360, Aqua, arrayer, CFD3121, electroporate, Gel-doc, Helios gun, iQ5 multicolor real-time PCR detection, MiniProtean, multi-plex, ProteOn XPR36, Quantum, real time polymerase chain reaction, sequigen, trans, Zeta-Probe membranes, 165-2257, 1652088, 1652257, 1652432, 169-2000, 1692000, 1692100, 170-9780, 1703351, 1708171, 1709300, 171000205, 1760100, 732-6340, Aurum, blotter, chemical transformation, cyclers, lipid-mediated, LIT5553, Molecular Imager Gel Doc XR, Quantum-prep plasmid miniprep, ribo-nucleic, sequi-gen GT, 1000 He, 163-2130, 165-2088, 165-3862, 1653863, 169-2300, 7326800, arrays, bioplex, blotting, CFB-3120, phenotype, Prote-on XPR-36, silentmer validated dicer substrate siRNA duplexes, thermal cycler, 1645050, 165-2100, 165-2432, 169-2100, 169-2200, 170-8171, 170-9300, 171000201, 7007000, 732-6343, Bio-Plex 200, biolistic particle delivery, deoxy-ribo, deoxyribonucleic, DNA transfer, Experion automated electrophoresis, geldoc, image, isoelectric focusing, mini-opticon, MiniOpticon, PDS-1000/He, protein profiling, RNA, TransBlot-SD, transform, Zeta Probe membrane, 163-2086, 164-5050, 165-3861, 1652660, 1653860, 1654000, 1692200, 1692300, 170-3360, 176-0100, 700-7001, 700-7002, 7326340, Aquapure genomic, electroporation, Micro-pulser cuvettes, Micropulser electroporator, mini-prep, multiplexed, PROTEON, Ready-Prep 2 D, ribonucleic, Trans-blot SD semi-dry, trans-fectin, Transfectin, transfection, XPR 36 5924 Stem Cell Basics for Life Science Researchers Brochure, Rev A 5924 H /webroot/web/pdf/lsr/literature/Bulletin_5924A.pdf Literature PDF Brochures_and_Specifications /webroot/web/images/icon_pdf.gif No Stem Cell Basics for Life Science Researchers Brochure, Rev A 5924 Bulletin 5924, embryonic differentiation, embryo, isolated pluripotent sc, development, multipotent, unipotent, terminally differentiated, blastocyst, mass of inner cells, ICM, es, history, hes, mes, human, mouse, lines, adult, somatic, imprinting, chimeric, programming, reprogramming, ips, isolation and maintenance, growth factors, media, medium, tissue culture, fibroblast, fibroblasts, feeder layer, hematopoietic, induced, ectoderm, mesoderm, endoderm, transfection, knock down, RNAi, viral-mediated delivery, lipid-mediated, electroporation, biolistic particle, retrovirus, genomic analysis, proteomic, expression, phenotype, karotyping, SNPs, SNP, PCR, microarray, profiling, profile, qPCR, array, flow cytometry, immunocytochemistry, RT-PCR, RT-qPCR, western blotting, Bio-Plex suspension array system, sso7d fusion protein technology, 170-8891, 170-8893, 170-8895, 170-8899, 172-5203, 170-8885, 172-5213, 172-5103, 172-5853, 172-5233, 170-8864, 172-5849, 172-5253, 172-5243, 172-5108, 172-5857, 165-2661, 165-2670, 165-2674, 165-2677, 165-2681, 165-2081, 165-2082, 165-2086, 165-2088, 165-2091, 165-2092, 170-8201, 170-8351, 170-8202, 170-8352, 170-8206, 170-8353, 170-8203, 170-8354, 170-8204, 170-8205, 170-8200, 1708891, 1708893, 1708895, 1708899, 1725203, 1708885, 1725213, 1725103, 1725853, 1725233, 1708864, 1725849, 1725253, 1725243, 1725108, 1725857, 1652661, 1652670, 1652674, 1652677, 1652681, 1652081, 1652082, 1652086, 1652088, 1652091, 1652092, 1708201, 1708351, 1708202, 1708352, 1708206, 1708353, 1708203, 1708354, 1708204, 1708205, 1708200 1365 Introducing Proteins Into Cells by Electroporation 1365 /webroot/web/pdf/lsr/literature/Bulletin_1365.pdf Literature PDF Application_Notes /webroot/web/images/general/icons/icon_pdf.gif No Introducing Proteins Into Cells by Electroporation 1365 lit1365, bulletin 1365, protein, transfer, cell, cellular, intracellular, electroporation, 165-2660, 165-2661, 165-2662, 165-2666, 165-2667, 165-2668, 165-2669, 1652660, 1652661, 1652662, 1652666, 1652667, 1652668, 1652669, transfection, trans-fection, transformation, genepulser, gene pulser, electroporator, condition, protocol, shockpod, efficiency, protocols, 1652081, 1652082, 1652083, 1652086, 1652088, 1652089, 1652091, 1652092, 1652093, pulsetrac, pulse trac, shock pod, 165-2660J1, 165-2661J1, 165-2662J1, 165-2666J1, 1652660J1, 1652661J1, 1652662J1, 1652666J1, 170-2503, 170-2503EDU, 170-2504, 170-2505, 1702503, 1702503EDU, 1702504, 1702505 1345 Electroporation of Primary Bone Marrow Cells 1345 /webroot/web/pdf/lsr/literature/Bulletin_1345.pdf Literature PDF Articles_and_Whitepapers /webroot/web/images/general/icons/icon_pdf.gif No Electroporation of Primary Bone Marrow Cells 1345 lit1345, bulletin 1345, bone, marrow, gene pulser, gene transfer, electroporation, 165-2660, 165-2661, 165-2662, 165-2666, 165-2667, 165-2668, 165-2669, 1652660, 1652661, 1652662, 1652666, 1652667, 1652668, 1652669, transfection, trans-fection, transformation, genepulser, electroporator, condition, protocol, shockpod, efficiency, protocols, 1652081, 1652082, 1652083, 1652086, 1652088, 1652089, 1652091, 1652092, 1652093, pulsetrac, pulse trac, shock pod, 165-2660J1, 165-2661J1, 165-2662J1, 165-2666J1, 1652660J1, 1652661J1, 1652662J1, 1652666J1, 170-2503, 170-2503EDU, 170-2504, 170-2505, 1702503, 1702503EDU, 1702504, 1702505 1355 Production of Hybridomas by Electrofusion 1355 /webroot/web/pdf/lsr/literature/Bulletin_1355.pdf Literature PDF Articles_and_Whitepapers /webroot/web/images/general/icons/icon_pdf.gif No Production of Hybridomas by Electrofusion 1355 lit1355, bulletin 1355, cell fusion, hybridoma, gene pulser, antigen, antibody, electrofusion, 165-2660, 165-2661, 165-2662, 165-2666, 165-2667, 165-2668, 165-2669, 1652660, 1652661, 1652662, 1652666, 1652667, 1652668, 1652669, transfection, trans-fection, transformation, genepulser, electroporation, electroporator, condition, protocol, shockpod, efficiency, protocols, 1652081, 1652082, 1652083, 1652086, 1652088, 1652089, 1652091, 1652092, 1652093, pulsetrac, pulse trac, shock pod, 165-2660J1, 165-2661J1, 165-2662J1, 165-2666J1, 1652660J1, 1652661J1, 1652662J1, 1652666J1, 170-2503, 170-2503EDU, 170-2504, 170-2505, 1702503, 1702503EDU, 1702504, 1702505 1349 Electroporation of T-Cell and Macrophage Cell Lines 1349 /webroot/web/pdf/lsr/literature/Bulletin_1349.pdf Literature PDF Articles_and_Whitepapers /webroot/web/images/general/icons/icon_pdf.gif No Electroporation of T-Cell and Macrophage Cell Lines 1349 lit1349, bulletin 1349, t-cell, macrophage, electroporation, gene pulser, gene transfer, dna transfer, 165-2660, 165-2661, 165-2662, 165-2666, 165-2667, 165-2668, 165-2669, 1652660, 1652661, 1652662, 1652666, 1652667, 1652668, 1652669, transfection, trans-fection, transformation, genepulser, electroporator, condition, protocol, shockpod, efficiency, protocols, 1652081, 1652082, 1652083, 1652086, 1652088, 1652089, 1652091, 1652092, 1652093, pulsetrac, pulse trac, shock pod, 165-2660J1, 165-2661J1, 165-2662J1, 165-2666J1, 1652660J1, 1652661J1, 1652662J1, 1652666J1, 170-2503, 170-2503EDU, 170-2504, 170-2505, 1702503, 1702503EDU, 1702504, 1702505 5542 5542 Electroporation Systems Brochure, Rev A H /webroot/web/pdf/lsr/literature/Bulletin_5542.pdf Literature PDF Brochures and Specifications /webroot/web/images/general/icons/icon_pdf.gif No Electroporation Systems Brochure, Rev A Life Science 5542 165-2092, 165-2660, 165-2662, cell, cuvette, gene-pulser, genepulser, mammalian, shockpod, 165-2666, 1652091, 1652661, acids, arc-quenching, arq, electroporating, eukaryotic, fungal, micropulser, prokaryotic, transfect, 165-2082, 165-2091, 1652081, 1652083, 1652092, 1652100, 1652667, 1652669, arc quenching, ark, cuvet, cuvettes, Escherichia coli, eucaryotic, fungi, micro-pulse, shock-pod, 165-2081, 165-2086, 165-2093, 165-2661, 1652089, bacteria, cells, e., e.coli, electroporator, micropulse, pulsetrac, yeasts, 165-2083, 165-2100, 1652082, 1652093, 1652668, bacterial, dna, Gene-pulser xcell, pulse trac, rna, transform, yeast, 165-2089, 165-2667, 165-2669, 1652086, 1652088, 1652666, electroporators, fungus, saccharomyces cerevisiae, transfirmation, 165-2088, 165-2668, electroporaters, eucaryotes, eukaryotes, excel, gene transfer, prokaryotes, 1652660, 1652662, cuvets, electroporater, LIT5542, micro pulser, nucleic acid, track, transfection, transformation 5858 The Gene Pulser MXcell Electroporation System Provides Reproducible Results in Electroporation Plates and Cuvettes With the Same Protocol, Rev A 5858 /webroot/web/pdf/lsr/literature/Bulletin_5858.pdf Literature PDF Application_Notes /webroot/web/images/general/icons/icon_pdf.gif No The Gene Pulser MXcell Electroporation System Provides Reproducible Results in Electroporation Plates and Cuvettes With the Same Protocol, Rev A 5858 multiwell plate, waveforms, cho, chinese hamster ovary cells, conditions, cos-7, gene expression, viability, gfp, LIT5858, transfection efficiency, cell viability, condition, protocol, shockpod cuvette chamber, plates, protocols, waveform, exponential-decay pulse, square-wave 5641 The Gene Pulser MXcell Electroporation System Delivers Consistent Results Required for Optimizing Delivery Protocols, Rev A 5641 /webroot/web/pdf/lsr/literature/Bulletin_5641.pdf Literature PDF Protocols /webroot/web/images/general/icons/icon_pdf.gif No The Gene Pulser MXcell Electroporation System Delivers Consistent Results Required for Optimizing Delivery Protocols, Rev A 5641 gene silencing, LIT5641, luciferase activity, CHO, Bulletin 5641, 5641, HeLa cells, plasmid delivery, 5F2C, siRNA transfection 5603 Optimization of Electroporation Using Gene Pulser Electroporation Buffer and the Gene Pulser MXcell Electroporation System, Rev A 5603 /webroot/web/pdf/lsr/literature/Bulletin_5603.pdf Literature PDF Application_Notes /webroot/web/images/general/icons/icon_pdf.gif No Optimization of Electroporation Using Gene Pulser Electroporation Buffer and the Gene Pulser MXcell Electroporation System, Rev A 5603 silentMER (174-9974, luciferase expression plasmid, optimization studies, Exogenous nucleic acids, exponential-decay, HPF cells, LIT5603, 174-9975, siRNA, 174-9961), transfer, human primary fibroblasts, square-wave, transfection 5622 Optimization of Electroporation Conditions With the Gene Pulser MXcell Electroporation System, Rev A 5622 /webroot/web/pdf/lsr/literature/Bulletin_5622.pdf Literature PDF Application_Notes /webroot/web/images/general/icons/icon_pdf.gif No Optimization of Electroporation Conditions With the Gene Pulser MXcell Electroporation System, Rev A 5622 plasmid DNA, square waveform, LIT5622, Well set, transfection efficiency, difficult-to-transfect, primary, exponential, optimization protocol, siRNAs, interelectrode distance, square-wave 5686 Optimization of Electroporation Conditions for Jurkat Cells Using the Gene Pulser MXcell Electroporation System, Rev A 5686 /webroot/web/pdf/lsr/literature/Bulletin_5686.pdf Literature PDF Application_Notes /webroot/web/images/general/icons/icon_pdf.gif No Optimization of Electroporation Conditions for Jurkat Cells Using the Gene Pulser MXcell Electroporation System, Rev A 5686 5686, knockdown, Bulletin 5686, silencing, transfer, siLentMer, siRNA, plasmid DNA, luciferase activity assay, gene delivery, LIT5686, transfection 5687 Transfection of Mammalian Cells Using Preset Protocols on the Gene Pulser MXcell Electroporation System, Rev A 5687 /webroot/web/pdf/lsr/literature/Bulletin_5687.pdf Literature PDF Protocols /webroot/web/images/general/icons/icon_pdf.gif No Transfection of Mammalian Cells Using Preset Protocols on the Gene Pulser MXcell Electroporation System, Rev A 5687 short, trans-fection, efficiency, LIT5687, cho-k1, chok1, delivery, hela, sirna, expression, pcmviluc, plasmids, trans fection, condition, small interfering rna, cho, cell line, conditions, optimization, optimize, plasmid, viability 5720 Transfection of Neuroblastoma Cell Lines Using the Gene Pulser MXcell Electroporation System, Rev A 5720 /webroot/web/pdf/lsr/literature/Bulletin_5720.pdf Literature PDF Application_Notes /webroot/web/images/general/icons/icon_pdf.gif No Transfection of Neuroblastoma Cell Lines Using the Gene Pulser MXcell Electroporation System, Rev A 5720 delivery, LIT5720, siRNA, conditions, optimization, optimize, efficiencies, IMR-32, plasmid DNA, short, trans-fection, SK_N_SH, Cancer, pCMViLuc, plasmids, trans fection, efficiency, pCMVi-Luc, silencing, condition, gene expression analysis, small interfering RNA, neural cells 5704 Electroporation Conditions for Chinese Hamster Ovary Cells Using the Gene Pulser MXcell Electroporation System, Rev A 5704 /webroot/web/pdf/lsr/literature/Bulletin_5704.pdf Literature PDF Application_Notes /webroot/web/images/general/icons/icon_pdf.gif No Electroporation Conditions for Chinese Hamster Ovary Cells Using the Gene Pulser MXcell Electroporation System, Rev A 5704 efficiency, cell line, optimization, optimize, cho, cho-k1, chok1, LIT5704, trans-fection, expression, trans fection, transfection 5733 Transfection of Chinese Hamster Ovary-Derived DG44 Cells Using the Gene Pulser MXcell Electroporation System, Rev A 5733 /webroot/web/pdf/lsr/literature/Bulletin_5733.pdf Literature PDF Application_Notes /webroot/web/images/general/icons/icon_pdf.gif No Transfection of Chinese Hamster Ovary-Derived DG44 Cells Using the Gene Pulser MXcell Electroporation System, Rev A 5733 cell line, conditions, optimization, optimize, efficiency, pcmvi-luc, efficiencies, plasmid dna, short, trans-fection, delivery, sirna, cho, LIT5733, condition, small interfering rna, pcmviluc, plasmids, trans fection 5774 Delivery of siRNA by Electroporation Into Primary Human Neutrophils Using the Gene Pulser MXcell System, Rev A 5774 /webroot/web/pdf/lsr/literature/Bulletin_5774.pdf Literature PDF Application_Notes /webroot/web/images/general/icons/icon_pdf.gif No Delivery of siRNA by Electroporation Into Primary Human Neutrophils Using the Gene Pulser MXcell System, Rev A 5774 trans-fection, cell, cells, conditions, Fura-2 AM, inflammatory neutrophil activation, optimization, optimize, short interfering RNA, efficiency, flux, fMLP, RNAi, indicator, intracellular calcium concentration, trans fection, condition, LIT5774, mammalian, small, fluxes, transfection 5778 Electroporation Parameters for Transfection of HL-60 Leukocytic Cell Line With siRNA Using the Gene Pulser MXcell System, Rev B 5778 /webroot/web/pdf/lsr/literature/Bulletin_5778B.pdf Literature PDF Application_Notes /webroot/web/images/general/icons/icon_pdf.gif No Electroporation Parameters for Transfection of HL-60 Leukocytic Cell Line With siRNA Using the Gene Pulser MXcell System, Rev B 5778 inflammation, condition, inflammatory leukemic, leukocyte, LIT5778, primary cells, trans fection, trans-fection, RNAi, efficiency, neutrophil activation, RNA interference, conditions, leukocytes, optimization, optimize, short interfering RNA, mammalian, neutrophils, small 5823 Electroporation of Primary Murine Mast Cells Using the Gene Pulser MXcell Electroporation System, Rev A 5823 /webroot/web/pdf/lsr/literature/Bulletin_5823A.pdf Literature PDF Application_Notes /webroot/web/images/general/icons/icon_pdf.gif No Electroporation of Primary Murine Mast Cells Using the Gene Pulser MXcell Electroporation System, Rev A 5823 trans fection, conditions, green fluorescent protein, optimization, optimize, delivery, flow cytometry, transfection efficiency, cell viability, plasmid DNA, trans-fection, condition, protocol, reporter gene, protocols, transfect, GFP expression 5842 Optimization of Electroporation Conditions for Two Different Burkitt Lymphoma Cell Lines Using the Gene Pulser MXcell System, Rev B 5842 /webroot/web/pdf/lsr/literature/Bulletin_5842.pdf Literature PDF Application_Notes /webroot/web/images/general/icons/icon_pdf.gif No Optimization of Electroporation Conditions for Two Different Burkitt Lymphoma Cell Lines Using the Gene Pulser MXcell System, Rev B 5842 ramos, protocols, luciferase activity, namalwa cells, ldh level, protocol, exponential-decay condition, gene expression, viability, gfp, LIT5842, transfection efficiency, square-wave 5684 0108 0108 Simple and Rapid Optimization With Maximum Transfection Efficiency, Rev A /webroot/web/pdf/lsr/literature/Bulletin_0108.pdf Literature PDF Scientific_Posters /webroot/web/images/general/icons/icon_pdf.gif No Simple and Rapid Optimization With Maximum Transfection Efficiency, Rev A Life Science 0108 108, 0108, LIT0108, transfection, efficiency, mammalian cell, sirna 5860 Analysis of IL-4 Dependent Gene Expression in Namalwa Cells by siRNA Transfection: An Example of Pathway Analysis Using the Gene Pulser MXcell Electroporation System, Rev A 5860 /webroot/web/pdf/lsr/literature/Bulletin_5860A.pdf Literature PDF Application_Notes /webroot/web/images/general/icons/icon_pdf.gif No Analysis of IL-4 Dependent Gene Expression in Namalwa Cells by siRNA Transfection: An Example of Pathway Analysis Using the Gene Pulser MXcell Electroporation System, Rev A 5860 condition, ldh level, LIT5860, small, burkitt lymphoma cell line, knock down, trans-fection, burkitt’s, rnai, gapdh knockdown, tarc/ccl17, conditions, optimize, short interfering rna, stat6, primary cells, trans fection, ccl17 5904 Transfection of Mouse and Human Embryonic Stem Cells by Electroporation Using the Gene Pulser Mxcell&trade; System, Rev A 5904 /webroot/web/pdf/lsr/literature/Bulletin_5904.pdf Literature PDF Brochures_and_Specifications /webroot/web/images/icon_pdf.gif Transfection of Mouse and Human Embryonic Stem Cells by Electroporation Using the Gene Pulser Mxcell&trade; System No Transfection of Mouse and Human Embryonic Stem Cells by Electroporation Using the Gene Pulser Mxcell&trade; System, Rev A 5904 transfection, trans-fection, genepulser, gene pulser, electroporation, electroporator, antibiotic resistance, buffer, dna delivery, expression, gene pulser ii, gene targeting, geneticin resistant, h9 es, mef, mouse, optimize, optimization, parameters, primary, trans-fection, trans fection, 165-2668, 1652668 2497 5443 Biolistic Particle Delivery Systems Brochure, Rev A 5443 /webroot/web/pdf/lsr/literature/Bulletin_5443.pdf Literature PDF Brochures_and_Specifications /webroot/web/images/general/icons/icon_pdf.gif No Biolistic Particle Delivery Systems Brochure, Rev A 5443 165-2421, 165-2422, 1652422, cell-culture, chloroplasts, genes, Hepta adaptor, LIT5443, micro-carrier, micro-carriers, microparticle, plant, transfect, transfer, 165-2225, 165-2257, 165-2326, 165-2335, 1652225, 1652257, 1652278, 1652335, 1652432, bombardment, co-delivery, embryos, microcarrier, 1000/He, 165-2278, 1652326, 1652424, 1652431, bacteria, Helios Gene Gun System, mitochondrial, plasmid, transfecting, 165-2259, 165-2262, 165-2411, 165-2413, 165-2432, 1652413, bacterial, cotransformation, deoxyribonucleic, DNA, micro-particle, mitochondrion, PDS-1000/He, RNA, transform, yeast, 165-2258, 165-2336, 165-2412, 1652258, 1652336, cell culture, goldcoat, in vivo transformation, microcarriers, plasmids, 165-2431, 1652411, 1652418, acid-coated, bombard, chloroplast, micro-particles, rupture disks, 1652259, 1652421, co-transformation, codelivery, embryo, mitochondria, nucleic acid coated, ribonucleic, transfection, 165-2418, 165-2424, 1652262, 1652412, acceleration, animal, Heleos, helium pulse, microparticles, PDS 1000 He, pollen, trypsinized 5447 Biolistic PDS-1000/He System Flier, Rev A 5447 /webroot/web/pdf/lsr/literature/Bulletin_5447.pdf Literature PDF Brochures_and_Specifications /webroot/web/images/general/icons/icon_pdf.gif No Biolistic PDS-1000/He System Flier, Rev A 5447 165-2225, 165-2257, 1652225, 1652257, acid, embryos, fungus, gold microparticle, particle bombardment, targets, chloroplasts, coridia, tissue culture, 165-2258, 1652258, biolistics, expression, fungi, bacteria, bio-listics, LIT5447, yeasts, algae, aspergillus nidulans, micro-particles, oganelles, shocking chamber, target, transforms, 165-2259, dna, helium, rna, yeast, 1652259, he, mitochondria, nucleic acid, pds1000, pds1000-he, transformation, fish embryo, gene transfer, microparticles, oganelle, pollen, tissues 5446 Helios Gene Gun System Flier, Rev A 5446 /webroot/web/pdf/lsr/literature/Bulletin_5446.pdf Literature PDF Brochures_and_Specifications /webroot/web/images/general/icons/icon_pdf.gif No Helios Gene Gun System Flier, Rev A 5446 165-2431, 1652418, cartridge, geneshot, shot, target, 165-2421, 165-2422, 1652422, acids, barrel, LIT5446, micro-carrier, micro-carriers, plant cell culture, 1652424, 1652431, bacteria, bullet, cytomegalovirus, galactosidase, plasmid, projectiles, promoter, yeasts, 165-2413, 165-2432, 1652413, beta, biolistic, bullets, cmv, dna, microbe, rna, yeast, 165-2412, biolistics, expression, microcarriers, plants, plasmids, 165-2420, 1652421, cartridges, microparicles, nucleic acid, 1652432, beta-galacosidase, genome, gold microparticle, lacz, luciferase, microbes, microcarrier, projectile, targets, tissue, 165-2418, 165-2424, 1652412, 1652420, eukaryotes, gene transfer, helium pulse, luc, prokaryotes 2051 Transformation of Filamentous Fungi by Microprojectile Bombardment 2051 /webroot/web/pdf/lsr/literature/Bulletin_2051.pdf Literature PDF Articles_and_Whitepapers /webroot/web/images/general/icons/icon_pdf.gif No Transformation of Filamentous Fungi by Microprojectile Bombardment 2051 bulletin 2051, lit2051, transfection, trans-fection, microprojectile, mircoparticle, gold, tungsten, biolistic particle delivery, bombard, bombardment, transfection, trans-fection, protocol, helios, gene gun, pds-1000, pds-1000/he, fungi, fungus 2015 Sub-Micron Gold Particles Are Superior to Larger Particles for Efficient Biolistic Transformation of Organelles and Some Cell Types 2015 /webroot/web/pdf/lsr/literature/Bulletin_2015.pdf Literature PDF Articles_and_Whitepapers /webroot/web/images/general/icons/icon_pdf.gif No Sub-Micron Gold Particles Are Superior to Larger Particles for Efficient Biolistic Transformation of Organelles and Some Cell Types 2015 bulletin 2015, lit2015, transfection, trans-fection, microprojectile, mircoparticle, gold, tungsten, biolistic particle delivery, bombard, bombardment, transfection, trans-fection, protocol, helios, gene gun, pds-1000, pds-1000/he 2087 Biolistic Transfection of Organotypic Brain Slices and Dissociated Cells 2087 /webroot/web/pdf/lsr/literature/Bulletin_2087.pdf Literature PDF Articles_and_Whitepapers /webroot/web/images/general/icons/icon_pdf.gif No Biolistic Transfection of Organotypic Brain Slices and Dissociated Cells 2087 bulletin 2087, lit2087, transfection, trans-fection, microprojectile, mircoparticle, gold, tungsten, biolistic particle delivery, bombard, bombardment, transfection, trans-fection, protocol, helios, gene gun, pds-1000, pds-1000/he, brain, 1652258, 1652257, 165-2258, 165-2257 2658 2658 Single-Cell Complementation of Barley <i>mlo</i> Mutants Using a PDS-1000/He Hepta System /webroot/web/pdf/lsr/literature/Bulletin_2658.pdf Literature PDF Application Notes /webroot/web/images/general/icons/icon_pdf.gif No Single-Cell Complementation of Barley <i>mlo</i> Mutants Using a PDS-1000/He Hepta System Life Science 2658 PDS1000He, PDS1000, bulletin 2658, LIT2658 1688 Optimization of Biolistic<sup>&reg;</sup> Transformation Using the Helium-Driven PDS-1000/He System 1688 /webroot/web/pdf/lsr/literature/Bulletin_1688.pdf Literature PDF Articles_and_Whitepapers /webroot/web/images/general/icons/icon_pdf.gif No Optimization of Biolistic Transformation Using the Helium-Driven PDS-1000/He System 1688 lit1688, bulletin 1688, biolistic, particle delivery, gene delivery, gene transfer, 165-2257, 165-2258, 165-2225, 165-2259, 1652257, 1652258, 1652225, 1652259 2433 2433 Transformation of Nematodes With the Helios Gene Gun /webroot/web/pdf/lsr/literature/Bulletin_2433.pdf Literature PDF Application Notes /webroot/web/images/general/icons/icon_pdf.gif No Transformation of Nematodes With the Helios Gene Gun Life Science 2433 biolistic particle delivery, bombard, bulletin 2433, gene transfer, LIT2433 2552 2552 The Gene Gun: Current Applications in Cutaneous Gene Therapy, Rev A /webroot/web/pdf/lsr/literature/Bulletin_2552.pdf Literature PDF Application Notes /webroot/web/images/general/icons/icon_pdf.gif No The Gene Gun: Current Applications in Cutaneous Gene Therapy, Rev A Life Science 2552 vaccination, biolistic particle delivery, helios biolistics, LIT2552, bulletin 2552, helios 2453 2453 Optimization of Gene Delivery Into Arabidopsis, Tobacco, and Birch Using the Helios Gene Gun System /webroot/web/pdf/lsr/literature/Bulletin_2453.pdf Literature PDF Application Notes /webroot/web/images/general/icons/icon_pdf.gif No Optimization of Gene Delivery Into Arabidopsis, Tobacco, and Birch Using the Helios Gene Gun System Life Science 2453 bombard, biolistic particle delivery, microprojectile, transformation, LIT2453 2531 Inoculation of Viral RNA and cDNA to Potato and Tobacco Plants Using the Helios Gene Gun 2531 /webroot/web/pdf/lsr/literature/Bulletin_2531.pdf Literature PDF /webroot/web/images/general/icons/icon_pdf.gif No Inoculation of Viral RNA and cDNA to Potato and Tobacco Plants Using the Helios Gene Gun 2531 transfer, bombardment, biolistic particle delivery, LIT2531, transformation, bulletin 2531 2410 Detection of Reporter Gene Activity in Cell Cultures and Murine Epidermis After Helios<sup>&reg;</sup> Gene Gun-Mediated Particle Bombardment, Rev B 2410 /webroot/web/pdf/lsr/literature/Bulletin_2410.pdf Literature PDF Manuals_and_Quick_Guides /webroot/web/images/general/icons/icon_pdf.gif Detection of Reporter Gene Activity in Cell Cultures and Murine Epidermis After Helios Gene Gun-Mediated Particle Bombardment No Detection of Reporter Gene Activity in Cell Cultures and Murine Epidermis After Helios Gene Gun-Mediated Particle Bombardment 2410 helios, helium, biolistic, biolistics, gene gun, projectile, microprojectile, microparticle, transfection, transformation, 165-2411, 165-2431, 165-2451, 1652411, 1652431, 1652451 2726 Delivery of pCMV-S DNA Using the Helios&reg; Gene Gun System Is Superior to Intramuscular Injection in Balb/c Mice 2726 /webroot/web/pdf/lsr/literature/Bulletin_2726.pdf Literature PDF Application_Notes /webroot/web/images/general/icons/icon_pdf.gif Delivery of pCMV-S DNA Using the Helios&reg; Gene Gun System Is Superior to Intramuscular Injection in Balb/c Mice No Delivery of pCMV-S DNA Using the Helios&reg; Gene Gun System Is Superior to Intramuscular Injection in Balb/c Mice 2726 helios, gene gun, transfection, gene transfer, biolistic, particle delivery, bulletin 2726, lit2726, 125-0224, 1250224 1689 Comparison of Performance Characteristics of Different Biolistic<sup>&reg;</sup> Devices 1689 /webroot/web/pdf/lsr/literature/Bulletin_1689.pdf Literature PDF Articles_and_Whitepapers /webroot/web/images/general/icons/icon_pdf.gif No Comparison of Performance Characteristics of Different Biolistic<sup>&reg;<sup> Devices 1689 lit1689, bulletin 1689, bombard, pds-1000/he, biolistic, particle delivery, 165-2411, 165-2431, 165-2451, 165-2257, 165-2258, 165-2225, 165-2259, 1652411, 1652431, 1652451, 1652257, 1652258, 1652225, 1652259 2768 2768 Biolistic Gene Transfer to Generate Transgenic Schistosomes, Rev A /webroot/web/pdf/lsr/literature/Bulletin_2768.pdf Literature PDF Application Notes /webroot/web/images/general/icons/icon_pdf.gif No Biolistic Gene Transfer to Generate Transgenic Schistosomes, Rev A Life Science 2768 bulletin 2768, gene gun, LIT2768 3105 siLentFect Lipid Reagent Flier, Rev B 3105 /webroot/web/pdf/lsr/literature/Bulletin_3105B.pdf Literature PDF Brochures_and_Specifications /webroot/web/images/general/icons/icon_pdf.gif No siLentFect Lipid Reagent Flier, Rev B 3105 RNAi, bulletin 3105, LIT3105, Transfection 2873 TransFectin Lipid Reagent Brochure, Rev A 2873 /webroot/web/pdf/lsr/literature/Bulletin_2873.pdf Literature PDF Brochures_and_Specifications /webroot/web/images/general/icons/icon_pdf.gif No TransFectin Lipid Reagent Brochure, Rev A 2873 LIT2873, gene transfer, bulletin 2873, transfection 2874 TransFectin Lipid Reagent Flier, Rev B 2874 /webroot/web/pdf/lsr/literature/Bulletin_2874B.pdf Literature PDF Brochures_and_Specifications /webroot/web/images/general/icons/icon_pdf.gif No TransFectin Lipid Reagent Flier, Rev B 2874 LIT2874, bulletin 2874, Trans-Fectin 3197 Optimization of TransFectin Lipid Reagent-Mediated Transfection for Different Cell Types, Rev A 3197 /webroot/web/pdf/lsr/literature/Bulletin_3197.pdf Literature PDF Application_Notes /webroot/web/images/general/icons/icon_pdf.gif No Optimization of TransFectin Lipid Reagent-Mediated Transfection for Different Cell Types, Rev A 3197 bovine oviductal cells, pmbc, gene transfer, reagent, lipid, transfection, 170-3350, b lymphosarcoma, b-lymphosarcoma, bl3, pmbcs, suspension, 170-3351, optimize, peripheral blood, 170-3352, 1703351, 1703352, betalymphosarcoma, 1703350, adherent, beta-lymphosarcoma, lit3197, lymphocytes, mononuclear, optimal, cpae, endothelial, pulmonary artery, 165-2681, 165-2681B05, 223-9441, 223-9441EDU, 223-9442, HSS-9601, HSS-9641, HSS-9641B04, HSS-9665, hss-9901, MSP-9601, MSP-9605, MSP-9611, MSP-9621, MSP-9631, MSP-9641, MSP-9651, MSP-9661, MSS-9601, MSS-9611, MSS-9631, MSS-9641, 1652681, 1652681B05, 2239441, 2239441EDU, 2239442, HSS9601, HSS9641, HSS9641B04, HSS9665, hss9901, MSP9601, MSP9605, MSP9611, MSP9621, MSP9631, MSP9641, MSP9651, MSP9661, MSS9601, MSS9611, MSS9631, MSS9641 3138_015 3138_015 TransFectin Lipid Reagent Protocol, Human, A459, Lung Carcinoma /webroot/web/pdf/lsr/literature/Bulletin_3138_015.pdf Literature PDF Protocols /webroot/web/images/general/icons/icon_pdf.gif No TransFectin Lipid Reagent Protocol, Human, A459, Lung Carcinoma Life Science 3138_015 170-3351, LIT3138_015, 170-3350, 1703350, adherent, cell culture, a-459, established, 170-3352, 1703351, 1703352, cultured cells, transfection, transformation 3138_005 3138_005 TransFectin Lipid Reagent Protocol, Rat, PC12, Pheochromocytoma /webroot/web/pdf/lsr/literature/Bulletin_3138_005.pdf Literature PDF Protocols /webroot/web/images/general/icons/icon_pdf.gif No TransFectin Lipid Reagent Protocol, Rat, PC12, Pheochromocytoma Life Science 3138_005 established, pc-12, adherent, cell culture , cultured cells, LIT3138_005, transfection, transformation 3138_009 3138_009 TransFectin Lipid Reagent Protocol, Human, 143B, Bone Marrow Osteosarcoma /webroot/web/pdf/lsr/literature/Bulletin_3138_009.pdf Literature PDF Protocols /webroot/web/images/general/icons/icon_pdf.gif No TransFectin Lipid Reagent Protocol, Human, 143B, Bone Marrow Osteosarcoma Life Science 3138_009 170-3351, 170-3352, 1703351, 1703352, cultured cells, 1703350, adherent, cell culture, 143 b, 170-3350, LIT3138_009, transfection, transformation, established 5226 Highly Efficient Transfection of Mouse ES Cells With TransFectin Lipid Reagent 5226 /webroot/web/pdf/lsr/literature/Bulletin_5226.pdf Literature PDF Application_Notes /webroot/web/images/general/icons/icon_pdf.gif No Highly Efficient Transfection of Mouse ES Cells With TransFectin Lipid Reagent 5226 gene transfer, reagent, lipid, transfection, 170-3351, 170-3350, culture, lit5226, cell, mammalian, stem, 1703350, gene transfer, 170-3352, 1703351, 1703352, ambroyic, bulletin 5226, 170-3351, 166-5017, 166-5017EDU, 1665017, 1665017EDU 3138_018 3138_018 TransFectin Lipid Reagent Protocol, Human, HEK 293, Kidney /webroot/web/pdf/lsr/literature/Bulletin_3138_018.pdf Literature PDF Protocols /webroot/web/images/general/icons/icon_pdf.gif No TransFectin Lipid Reagent Protocol, Human, HEK 293, Kidney Life Science 3138_018 established, 170-3351, 170-3350, hek293, 170-3352, 1703351, 1703352, cultured cells, 1703350, adherent, cell culture, LIT3138_018, transfection, transformation 3138_017 3138_017 TransFectin Lipid Reagent Protocol, Human, HEK 293T, Kidney /webroot/web/pdf/lsr/literature/Bulletin_3138_017.pdf Literature PDF Protocols /webroot/web/images/general/icons/icon_pdf.gif No TransFectin Lipid Reagent Protocol, Human, HEK 293T, Kidney Life Science 3138_017 hek293t, 170-3351, 170-3350, 1703350, adherent, cell culture, 293, established, LIT3138_017, 170-3352, 1703351, 1703352, cultured cells, transfection, transformation 5439 Highly Efficient Transfection of a Human Epithelial Cell Line With Chemically Synthesized siRNA Using siLentFECT Lipid Reagent, Rev A 5439 /webroot/web/pdf/lsr/literature/Bulletin_5439.pdf Literature PDF Application_Notes /webroot/web/images/general/icons/icon_pdf.gif No Highly Efficient Transfection of a Human Epithelial Cell Line With Chemically Synthesized siRNA Using siLentFECT Lipid Reagent, Rev A 5439 1703360, electroporate, electroproration, 170-3361, lipid mediated, LIT5439, catalog number 170-3360, cationic lipid-mediated transfection, 170-3362, 1703361, 1703362, rnai, electroporation 5370 Transfection of Caco-2 Cells With siRNA Using the siLentFect Lipid Reagent, Rev A 5370 /webroot/web/pdf/lsr/literature/bulletin_5370.pdf Literature PDF Application_Notes /webroot/web/images/general/icons/icon_pdf.gif No Transfection of Caco-2 Cells With siRNA Using the siLentFect Lipid Reagent, Rev A 5370 1703360, siRNAi, LIT5370, 170-3362, 170-3361, caco-2, caco2, 1703361, 1703362, bulletin5370, 170-3360, silentfect 5807 Beta-Actin Gene Silencing via siRNA and Its Effects on Protein Profiles (Poster), Rev B 5807 /webroot/web/pdf/lsr/literature/BULLETIN_5807.PDF Literature PDF Scientific_Posters /webroot/web/images/general/icons/icon_pdf.gif No Beta-Actin Gene Silencing via siRNA and Its Effects on Protein Profiles (Poster), Rev B 5807 LIT5807, 5808 Novel Uses of Microarrays in Detecting Gene Silencing (Poster), Rev A 5808 /webroot/web/pdf/lsr/literature/BULLETIN_5808.pdf Literature PDF Scientific_Posters /webroot/web/images/general/icons/icon_pdf.gif No Novel Uses of Microarrays in Detecting Gene Silencing (Poster), Rev A 5808 , LIT5808 5894 Life Science Research/Products/Transfection/Lipid Transfection/TransFectin Lipid Reagent ->MT::680dace0-c2a1-451c-ba7f-d15a2294aa52##Life Science Research/Products/Transfection/Lipid Transfection/siLentFect Lipid Reagent for RNAi ->MT::6860e063-0049-4607-95f9-03cae130b221##Life Science Research/Products/Transfection/Electroporation/Gene Pulser Xcell Electroporation Systems ->MT::b1a35eb3-d55c-47b3-aaf3-95e4d1d85848##Life Science Research/Products/Sample Quantitation/TC10 Automated Cell Counter ->MTS::KW3FRJ15##Life Science Research/Products/Transfection/Biolistic Particle Delivery Systems/PDS-1000 | He and Hepta Systems ->MT::1730e08d-f43a-46ea-b7f3-7b35c04c36eb## Life Science Research/Solutions/Technologies/qPCR|Real-Time PCR ->MTS::LUSO4W8UU##Life Science Research/Solutions/Technologies/Cell Counting Methods ->MTS::LUSOLB470##Life Science Research/Solutions/Technologies/Imaging and Analysis/Imaging Systems ->MTS::LUSQCPKSY##Life Science Research/Solutions/Technologies/Western Blotting ->MTS::LUSPPAKG4## Eddie C Chemical & Viral Transfection Methods Learn about chemical transfection methods including liposome-meditated transfection, calcium phosphate, and viral mediated delivery. chemical, transfection, liposome, lipid, viral, transformation 12/29/11 02:07 PM 12/29/21 02:08 PM AE,AI,AL,AM,AR,AT,AU,AZ,BA,BD,BE,BF,BG,BH,BN,BO,BR,BW,CA,CH,CL,CM,CN,CO,CR,CY,CZ,DE,DK,DO,DZ,EC,EE,EG,EH,ER,ES,ET,FI,FM,FO,FR,GA,GE,GF,GH,GP,GR,GT,GU,HK,HN,HR,HT,HU,ID,IE,IL,IN,IS,IT,JM,JO,JP,KE,KH,KR,KW,KZ,LB,LI,LK,LT,LU,LV,MA,MD,MG,MK,ML,MO,MQ,MS,MT,MU,MX,MY,NG,NI,NL,NO,NP,NZ,OM,PA,PE,PF,PG,PH,PK,PL,PR,PS,PT,PW,PY,QA,RO,RS,RU,SA,SB,SE,SG,SI,SK,SN,ST,SV,TG,TH,TN,TO,TR,TT,TW,TZ,UA,UG,UK,US,UY,UZ,VA,VE,VU,XK,YE,ZA en LSR /LSR/Technologies/Transfection N 0 Introduction to Transfection /en-us/applications-technologies/applications-technologies/chemical-viral-based-transfection-methods?ID=LUSONCB9O

This section provides information on chemical transfection methods including liposome-meditated transfection, calcium phosphate, and viral mediated delivery.

Related Topics: Instrument-Based Transfection Methods, Posttransfection Analysis of Cells, and Cell Counting Methods.

 

Methods of Transfection

Method Function Recommended Cells Products
Lipid-mediated Uses lipids to cause a cell to absorb nucleic acids; transfer genetic material into the cell via liposomes, which are vesicles that can merge with the cell membrane Immortal cells, adherent (attached), or suspension cells TransFectin™ Lipid Reagent

SiLentFect™ Lipid Reagent for RNAi
Viral vector (for example, retrovirus, lentivirus, adenovirus, or adeno-associated viruses) Uses viral vectors to deliver nucleic acids into cells Attached adherent cells, stem cells, primary cells  

 

Advantages and Disadvantages of the Different Transfection Methods
  Advantages Disadvantages
Lipid Mediated
  • Efficiency — effectively deliver nucleic acids to cells in a culture dish
  • Minimal toxicity — deliver the nucleic acids with low cell death or little decrease in metabolism
  • Activity — transfected nucleic acids lead to measurable change
  • Easy to use — minimal steps required; adaptable to high-throughput systems
  • Economical — a more active lipid will reduce the cost of lipid and nucleic acid, and achieve effective results
  • Not applicable to all cell types — some cell lines are unable to transfect with lipids
Viral Mediated
  • Very high gene-delivery efficiency, 95–100%
  • Simplicity of infection
  • Labor intensive
  • Best for introducing a single cloned gene that is to be highly expressed
  • P2 containment required for most viruses
    • Institutional regulation and review boards required
    • Viral transfer of regulatory genes or oncogenes is inherently dangerous and should be carefully monitored
    • Host range specificity may not be adequate
  • Many viruses are lytic
  • Need for packaging cell lines
Calcium Phosphate
  • Inexpensive
  • High-efficiency cell type dependent
  • Can be applied to a wide range of cell types
  • Can be used for transient and stable transfection
  • Reagent consistency is critical for reproducibility
  • Small pH changes (±0.1) can compromise the efficacy
  • Size and quality of the precipitate are crucial to the success
  • of transfection
  • Calcium phosphate precipitation does not work in RPMI, due to the high concentration of phosphate within the medium
DEAE-Dextran
  • Inexpensive
  • Easy to perform and quick
  • Can be applied to a wide range of cell types
  • High concentrations of DEAE-dextran can be toxic to cells
  • Transfection efficiencies will vary with cell type
  • Can only be used with transient transfection
  • Typically produces less than 10% delivery in primary cells
Magnet Mediated
  • Rapid
  • Increased transfection efficiency by the directed transport, especially for low amounts of nucleic acids
  • High transfection rates for adherent mammalian cell lines and primary cell cultures (suspension cells and cells from other organisms also successfully transfected but need to be immortalized)
  • Mild treatment of cells
  • Can also be performed in the presence of serum
  • Relatively new method
  • Requires adherent cells; suspension cells need to be immobilized or centrifuged

The following table summarizes how common lipid and viral methods work.

Protocols for Different Transfection Methods
Lipid-Mediated
  • Cationic lipids are amphiphilic molecules that have a positively charged polar head group linked, via an anchor, to a nonpolar hydrophobic domain generally comprised of two alkyl chains
  • Structural variations in the hydrophobic domain of cationic lipids include the length and the degree of non-saturation of the alkyl chains
  • Electrostatic interactions between the positive charges of the cationic lipid head groups and the negatively charged phosphates of the DNA backbone are the main forces that allow DNA to spontaneously associate with cationic lipids
Viral Mediated
RNA Viruses
  • Retroviruses — a class of viruses that can create double-stranded DNA copies of their RNA genomes; these copies can be integrated into the chromosomes of host cells. Examples include:
    • Murine leukemia virus (MuLV)
    • Human immunodeficiency virus (HIV)
    • Human T-cell lymphotropic virus (HTLV)
DNA Viruses
  • Adenoviruses — a class of viruses with double-stranded DNA genomes that cause respiratory, intestinal, and eye infections in humans; the virus that causes the common cold is an adenovirus
  • Adeno-associated viruses — a class of small, single-stranded DNA viruses that can insert their genetic material at a specific site on chromosome 19
  • Herpes simplex viruses — a class of double-stranded DNA viruses that infect a particular cell type, neurons; herpes simplex virus type 1 is a common human pathogen that causes cold sores

Viral Transfection workflow.

Calcium Phosphate

The protocol involves mixing DNA with calcium chloride, adding the mixture in a controlled manner to a buffered saline/phosphate solution, and allowing the mixture to incubate at room temperature.

This step generates a precipitate that is dispersed onto the cultured cells. The precipitate is taken up by the cells via endocytosis or phagocytosis.

Intercalation of Ca++ ions.

Protocol

Solution A: DNA in calcium solution
Solution B: 2x Hanks buffered saline solution

  • Add solution A to solution B while vortexing
  • Incubate 20–30 min. Apply the solution to the subconfluent cell culture
  • Incubate 2–12 hr. Replace the solution with complete growth medium
  • Assay for transient gene expression or begin selection for stable transformation

Cationic Polymers

Cationic polymers differ from cationic lipids in that they do not contain a hydrophobic moiety and are completely soluble in water. Given their polymeric nature, cationic polymers can be synthesized in different lengths, with different geometry (linear versus branched). The most striking difference between cationic lipids and cationic polymers is the ability of the cationic polymers to more efficiently condense DNA.

There are three general types of cationic polymers used in tranfections:

  • Linear (histone, spermine, and polylysine)
  • Branched
  • Spherical

Cationic polymers include polyethyleneimine (PEI) and dendrimers.


DEAE-Dextran

DEAE-dextran is a cationic polymer that tightly associates with negatively charged nucleic acids. The positively charged DNA:polymer complex comes into close association with the negatively charged cell membrane. DNA:polymer complex uptake into the cell is presumed to occur via endocytosis.

Protocol

Solution A: DNA (~1–5 µg/ml) diluted into 2 ml of growth medium with serum containing chloroquine
Solution B: DEAE-dextran solution (~50–500 ug/ml)
Solution C: ~5 ml of DMSO
Solution D: Complete growth medium

  • Add solution A to solution B, then mix gently
  • Aspirate cell medium and apply the mixed A and B solutions to the subconfluent cell culture. Incubate the DNA mixture for ~4 hr; check periodically for cell health
  • Aspirate the supernatant
  • Add solution C to induce DNA uptake
  • Remove DMSO and replace with solution D; assay for transient gene expression

Activated Dendrimers

Positively charged amino groups (termini) on the surface of the dendrimer molecule interact with the negatively charged phosphate groups of the DNA molecule to form a DNA-dendrimer complex.

The DNA-dendrimer complex has an overall positive net charge and can bind to negatively charged surface molecules on the membrane of eukaryotic cells. Complexes bound to the cell surface are taken into the cell by nonspecific endocytosis. Once inside the cell, the complexes are transported to the endosomes.

  • DNA is protected from degradation by endosomal nucleases by being highly condensed within the DNA-dendrimer complex.
  • Amino groups on the dendrimers that are unprotonated at neutral pH can become protonated in the acidic environment of the endosome. This leads to buffering of the endosome, which inhibits pH-dependent endosomal nucleases.

Dendrimer molecule.

Magnet-Mediated Transfection

Magnet-mediated transfection uses magnetic force to deliver nucleic acids into target cells. Therefore, nucleic acids are first associated with magnetic nanoparticles. Then, application of magnetic force drives the nucleic acid-particle complexes towards and into the target cells, where the cargo is released.

Magnet-mediated transfection.

 

Transfection Protocols

The transfection protocol online library contains protocols obtained from the literature, developed by Bio-Rad scientists, or submitted by scientists like you. Browse protocols to view our library and find your starting point or submit a protocol by clicking the proper technology.

 

Related Content

 
Literature
Number Description Download
5448 MicroPulser Electroporator Flier, Rev A Click to download
5582 Gene Pulser Electroporation Buffer Product Information Sheet, Rev A Click to download
5399 Gene Pulser siRNA Electroporation References, Rev A Click to download
5445 Gene Pulser Xcell Electroporation System Flier, Rev A Click to download
5598 Gene Pulser MXcell Electroporation System Flier, Rev B Click to download
5634 Gene Pulser MXcell Electroporation System Brochure, Rev A Click to download
1908 Electroporation Cuvette Flier, Rev B Click to download
5553 Gene Modulation Workflow Brochure, Rev B Click to download
5924 Stem Cell Basics for Life Science Researchers Brochure, Rev A Click to download
1365 Introducing Proteins Into Cells by Electroporation Click to download
1345 Electroporation of Primary Bone Marrow Cells Click to download
1355 Production of Hybridomas by Electrofusion Click to download
1349 Electroporation of T-Cell and Macrophage Cell Lines Click to download
5542 Electroporation Systems Brochure, Rev A Click to download
5858 The Gene Pulser MXcell Electroporation System Provides Reproducible Results in Electroporation Plates and Cuvettes With the Same Protocol, Rev A Click to download
5641 The Gene Pulser MXcell Electroporation System Delivers Consistent Results Required for Optimizing Delivery Protocols, Rev A Click to download
5603 Optimization of Electroporation Using Gene Pulser Electroporation Buffer and the Gene Pulser MXcell Electroporation System, Rev A Click to download
5622 Optimization of Electroporation Conditions With the Gene Pulser MXcell Electroporation System, Rev A Click to download
5686 Optimization of Electroporation Conditions for Jurkat Cells Using the Gene Pulser MXcell Electroporation System, Rev A Click to download
5687 Transfection of Mammalian Cells Using Preset Protocols on the Gene Pulser MXcell Electroporation System, Rev A Click to download
5720 Transfection of Neuroblastoma Cell Lines Using the Gene Pulser MXcell Electroporation System, Rev A Click to download
5704 Electroporation Conditions for Chinese Hamster Ovary Cells Using the Gene Pulser MXcell Electroporation System, Rev A Click to download
5733 Transfection of Chinese Hamster Ovary-Derived DG44 Cells Using the Gene Pulser MXcell Electroporation System, Rev A Click to download
5774 Delivery of siRNA by Electroporation Into Primary Human Neutrophils Using the Gene Pulser MXcell System, Rev A Click to download
5778 Electroporation Parameters for Transfection of HL-60 Leukocytic Cell Line With siRNA Using the Gene Pulser MXcell System, Rev B Click to download
5823 Electroporation of Primary Murine Mast Cells Using the Gene Pulser MXcell Electroporation System, Rev A Click to download
5842 Optimization of Electroporation Conditions for Two Different Burkitt Lymphoma Cell Lines Using the Gene Pulser MXcell System, Rev B Click to download
0108 Simple and Rapid Optimization With Maximum Transfection Efficiency, Rev A Click to download
5860 Analysis of IL-4 Dependent Gene Expression in Namalwa Cells by siRNA Transfection: An Example of Pathway Analysis Using the Gene Pulser MXcell Electroporation System, Rev A Click to download
5904 Transfection of Mouse and Human Embryonic Stem Cells by Electroporation Using the Gene Pulser Mxcell&trade; System, Rev A Click to download
5443 Biolistic Particle Delivery Systems Brochure, Rev A Click to download
5447 Biolistic PDS-1000/He System Flier, Rev A Click to download
5446 Helios Gene Gun System Flier, Rev A Click to download
2051 Transformation of Filamentous Fungi by Microprojectile Bombardment Click to download
2015 Sub-Micron Gold Particles Are Superior to Larger Particles for Efficient Biolistic Transformation of Organelles and Some Cell Types Click to download
2087 Biolistic Transfection of Organotypic Brain Slices and Dissociated Cells Click to download
2658 Single-Cell Complementation of Barley <i>mlo</i> Mutants Using a PDS-1000/He Hepta System Click to download
1688 Optimization of Biolistic<sup>&reg;</sup> Transformation Using the Helium-Driven PDS-1000/He System Click to download
2433 Transformation of Nematodes With the Helios Gene Gun Click to download
2552 The Gene Gun: Current Applications in Cutaneous Gene Therapy, Rev A Click to download
2453 Optimization of Gene Delivery Into Arabidopsis, Tobacco, and Birch Using the Helios Gene Gun System Click to download
2531 Inoculation of Viral RNA and cDNA to Potato and Tobacco Plants Using the Helios Gene Gun Click to download
2410 Detection of Reporter Gene Activity in Cell Cultures and Murine Epidermis After Helios<sup>&reg;</sup> Gene Gun-Mediated Particle Bombardment, Rev B Click to download
2726 Delivery of pCMV-S DNA Using the Helios&reg; Gene Gun System Is Superior to Intramuscular Injection in Balb/c Mice Click to download
1689 Comparison of Performance Characteristics of Different Biolistic<sup>&reg;</sup> Devices Click to download
2768 Biolistic Gene Transfer to Generate Transgenic Schistosomes, Rev A Click to download
3105 siLentFect Lipid Reagent Flier, Rev B Click to download
2873 TransFectin Lipid Reagent Brochure, Rev A Click to download
2874 TransFectin Lipid Reagent Flier, Rev B Click to download
3197 Optimization of TransFectin Lipid Reagent-Mediated Transfection for Different Cell Types, Rev A Click to download
3138_015 TransFectin Lipid Reagent Protocol, Human, A459, Lung Carcinoma Click to download
3138_005 TransFectin Lipid Reagent Protocol, Rat, PC12, Pheochromocytoma Click to download
3138_009 TransFectin Lipid Reagent Protocol, Human, 143B, Bone Marrow Osteosarcoma Click to download
5226 Highly Efficient Transfection of Mouse ES Cells With TransFectin Lipid Reagent Click to download
3138_018 TransFectin Lipid Reagent Protocol, Human, HEK 293, Kidney Click to download
3138_017 TransFectin Lipid Reagent Protocol, Human, HEK 293T, Kidney Click to download
5439 Highly Efficient Transfection of a Human Epithelial Cell Line With Chemically Synthesized siRNA Using siLentFECT Lipid Reagent, Rev A Click to download
5370 Transfection of Caco-2 Cells With siRNA Using the siLentFect Lipid Reagent, Rev A Click to download
5807 Beta-Actin Gene Silencing via siRNA and Its Effects on Protein Profiles (Poster), Rev B Click to download
5808 Novel Uses of Microarrays in Detecting Gene Silencing (Poster), Rev A Click to download
6179 Lipid Transfection Reagents Selection Guide
Click to download
 
 
LUSOOP49 [x-forwarded-proto] = [http] [x-forwarded-port] = [80] [x-forwarded-for] = [54.196.31.117, 10.232.3.249] [accept] = [text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8] [seourl] = [/en-us/applications-technologies/chemical-viral-based-transfection-methods] [x-amzn-trace-id] = [Root=1-5b4e486b-160595415310ff6ae2fc1c06] [x-forwarded-server] = [lsds-prod-s.br.aws-livesite.io] [x-forwarded-host] = [www.bio-rad.com] [x-query-string] = [ID=LUSOOP49] [host] = [10.232.17.28:1776] [x-request-uri] = [/en-us/applications-technologies/chemical-viral-based-transfection-methods] [connection] = [Keep-Alive] [accept-encoding] = [x-gzip, gzip, deflate] [user-agent] = [CCBot/2.0 (http://commoncrawl.org/faq/)] AppTech/AppTechDetails pageStyleKey internet/solutions_sub applications-technologies/chemical-viral-based-transfection-methods LSR LUSOOP49 Chemical and Viral Based Chemical- and Viral-Based Transfection Methods /webroot/web/html/lsr/solutions/technologies/transfection <p>This section provides information on chemical transfection methods including liposome-meditated transfection, calcium phosphate, and viral mediated delivery.</p> <p><strong>Related Topics</strong>: <a href="/evportal/destination/solutions?catID=LUSONV30E">Instrument-Based Transfection Methods</a>, <a href="/evportal/destination/solutions?catID=LUSOPS84">Posttransfection Analysis of Cells</a>, and <a href="/evportal/destination/solutions?catID=LUSOLB470">Cell Counting Methods</a>.</p> Methods of Transfection <table class="pd_table pd_gridlines" border="0"> <tbody> <tr class="pd_colorbackground"> <td><strong>Method</strong></td> <td><strong>Function</strong></td> <td><strong>Recommended Cells</strong></td> <td><strong>Products</strong></td> </tr> <tr class="txttop"> <td>Lipid-mediated</td> <td>Uses lipids to cause a cell to absorb nucleic acids; transfer genetic material into the cell via liposomes, which are vesicles that can merge with the cell membrane</td> <td>Immortal cells, adherent (attached), or suspension cells</td> <td><a href="http://www.bio-rad.com/evportal/destination/commerce/product_detail?catID=680dace0-c2a1-451c-ba7f-d15a2294aa52">TransFectin&trade; Lipid Reagent<br /> <br /> </a><a href="http://www.bio-rad.com/evportal/destination/commerce/product_detail?catID=6860e063-0049-4607-95f9-03cae130b221">SiLentFect&trade; Lipid Reagent for RNAi</a></td> </tr> <tr class="txttop"> <td>Viral vector (for example, retrovirus, lentivirus, adenovirus, or adeno-associated viruses)</td> <td>Uses viral vectors to deliver nucleic acids into cells</td> <td>Attached adherent cells, stem cells, primary cells</td> <td>&nbsp;</td> </tr> </tbody> </table> <p>&nbsp;</p> <table class="pd_table pd_gridlines" border="0"> <tbody> <tr class="pd_colorbackground"> <td colspan="3"><strong>Advantages and Disadvantages of the Different Transfection Methods</strong></td> </tr> <tr class="pd_colorbackground"> <td>&nbsp;</td> <td><strong>Advantages</strong></td> <td><strong>Disadvantages</strong></td> </tr> <tr class="txttop"> <td valign="top">Lipid Mediated</td> <td valign="top"> <ul> <li style="border:0px">Efficiency &mdash; effectively deliver nucleic acids to cells in a culture dish</li> <li style="border:0px">Minimal toxicity &mdash; deliver the nucleic acids with low cell death or little decrease in metabolism</li> <li style="border:0px">Activity &mdash; transfected nucleic acids lead to measurable change</li> <li style="border:0px">Easy to use &mdash; minimal steps required; adaptable to high-throughput systems</li> <li style="border:0px">Economical &mdash; a more active lipid will reduce the cost of lipid and nucleic acid, and achieve effective results</li> </ul> </td> <td valign="top"> <ul> <li style="border:0px">Not applicable to all cell types &mdash; some cell lines are unable to transfect with lipids</li> </ul> </td> </tr> <tr class="txttop"> <td valign="top">Viral Mediated</td> <td valign="top"> <ul> <li style="border:0px">Very high gene-delivery efficiency, 95&ndash;100%</li> <li style="border:0px">Simplicity of infection</li> </ul> </td> <td valign="top"> <ul> <li style="border:0px">Labor intensive</li> <li style="border:0px">Best for introducing a single cloned gene that is to be highly expressed</li> <li style="border:0px">P2 containment required for most viruses <ul> <li style="border:0px">Institutional regulation and review boards required</li> <li style="border:0px">Viral transfer of regulatory genes or oncogenes is inherently dangerous and should be carefully monitored</li> <li style="border:0px">Host range specificity may not be adequate</li> </ul> </li> <li style="border:0px">Many viruses are lytic</li> <li style="border:0px">Need for packaging cell lines</li> </ul> </td> </tr> <tr class="txttop"> <td valign="top">Calcium Phosphate</td> <td valign="top"> <ul> <li style="border:0px">Inexpensive</li> <li style="border:0px">High-efficiency cell type dependent</li> <li style="border:0px">Can be applied to a wide range of cell types</li> <li style="border:0px">Can be used for transient and stable transfection</li> </ul> </td> <td valign="top"> <ul> <li style="border:0px">Reagent consistency is critical for reproducibility</li> <li style="border:0px">Small pH changes (&plusmn;0.1) can compromise the efficacy</li> <li style="border:0px">Size and quality of the precipitate are crucial to the success</li> of transfection <li style="border:0px">Calcium phosphate precipitation does not work in RPMI, due to the high concentration of phosphate within the medium</li> </ul> </td> </tr> <tr class="txttop"> <td valign="top">DEAE-Dextran</td> <td valign="top"> <ul> <li style="border:0px">Inexpensive</li> <li style="border:0px">Easy to perform and quick</li> <li style="border:0px">Can be applied to a wide range of cell types</li> </ul> </td> <td valign="top"> <ul> <li style="border:0px">High concentrations of DEAE-dextran can be toxic to cells</li> <li style="border:0px">Transfection efficiencies will vary with cell type</li> <li style="border:0px">Can only be used with transient transfection</li> <li style="border:0px">Typically produces less than 10% delivery in primary cells</li> </ul> </td> </tr> <tr class="txttop"> <td valign="top">Magnet Mediated</td> <td valign="top"> <ul> <li style="border:0px">Rapid </li> <li style="border:0px"> Increased transfection efficiency by the directed transport, especially for low amounts of nucleic acids</li> <li style="border:0px"> High transfection rates for adherent mammalian cell lines and primary cell cultures (suspension cells and cells from other organisms also successfully transfected but need to be immortalized)</li> <li style="border:0px"> Mild treatment of cells</li> <li style="border:0px"> Can also be performed in the presence of serum</li> </ul> </td> <td valign="top"> <ul> <li style="border:0px">Relatively new method</li> <li style="border:0px"> Requires adherent cells; suspension cells need to be immobilized or centrifuged</li> </ul> </td> </tr> </tbody> </table> <p>The following table summarizes how common lipid and viral methods work.</p> <table class="pd_table pd_gridlines" border="0"> <tbody> <tr class="pd_colorbackground"> <td><strong>Protocols for Different Transfection Methods</strong></td> <td></td> </tr> <tr class="pd_colorbackground"> <td><strong>Lipid-Mediated</strong></td> <td></td> </tr> <tr> <td> <ul> <li style="border:0px">Cationic lipids are amphiphilic molecules that have a positively charged polar head group linked, via an anchor, to a nonpolar hydrophobic domain generally comprised of two alkyl chains</li> <li style="border:0px">Structural variations in the hydrophobic domain of cationic lipids include the length and the degree of non-saturation of the alkyl chains</li> <li style="border:0px">Electrostatic interactions between the positive charges of the cationic lipid head groups and the negatively charged phosphates of the DNA backbone are the main forces that allow DNA to spontaneously associate with cationic lipids</li> </ul> </td> <td></td> </tr> <tr class="pd_colorbackground"> <td><strong>Viral Mediated</strong></td> <td></td> </tr> <tr class="txttop"> <td><strong>RNA Viruses</strong> <ul> <li style="border:0px"><strong>Retroviruses</strong> &mdash; a class of viruses that can create double-stranded DNA copies of their RNA genomes; these copies can be integrated into the chromosomes of host cells. Examples include: <ul> <li style="border:0px">Murine leukemia virus (MuLV)</li> <li style="border:0px">Human immunodeficiency virus (HIV)</li> <li style="border:0px">Human T-cell lymphotropic virus (HTLV)</li> </ul> </li> </ul> <strong>DNA Viruses</strong><br /> <ul> <li style="border:0px"><strong>Adenoviruses</strong> &mdash; a class of viruses with double-stranded DNA genomes that cause respiratory, intestinal, and eye infections in humans; the virus that causes the common cold is an adenovirus</li> <li style="border:0px"><strong>Adeno-associated viruses</strong> &mdash; a class of small, single-stranded DNA viruses that can insert their genetic material at a specific site on chromosome 19</li> <li style="border:0px"><strong>Herpes simplex viruses</strong> &mdash; a class of double-stranded DNA viruses that infect a particular cell type, neurons; herpes simplex virus type 1 is a common human pathogen that causes cold sores</li> </ul> <br /> <p><img src="/webroot/web/images/lsr/solutions/technologies/gene_expression/pcr/technology_detail/gxt42_img1.jpg" alt="" width="449" height="436" /></p> <p class="caption"><strong>Viral Transfection workflow.</strong></p> </td> <td></td> </tr> <tr class="pd_colorbackground"> <td><strong>Calcium Phosphate</strong></td> <td></td> </tr> <tr> <td> <p>The protocol involves mixing DNA with calcium chloride, adding the mixture in a controlled manner to a buffered saline/phosphate solution, and allowing the mixture to incubate at room temperature.</p> <p>This step generates a precipitate that is dispersed onto the cultured cells. The precipitate is taken up by the cells via endocytosis or phagocytosis.</p> <p><img src="/webroot/web/images/lsr/solutions/technologies/gene_expression/pcr/technology_detail/gxt42_img2.jpg" alt="" width="331" height="310" /></p> <p class="caption"><strong>Intercalation of Ca<sup>++</sup> ions.</strong></p> <p><strong>Protocol</strong></p> <p>Solution A: DNA in calcium solution<br /> Solution B: 2x Hanks buffered saline solution</p> <ul> <li style="border:0px">Add solution A to solution B while vortexing</li> <li style="border:0px">Incubate 20&ndash;30 min. Apply the solution to the subconfluent cell culture</li> <li style="border:0px">Incubate 2&ndash;12 hr. Replace the solution with complete growth medium</li> <li style="border:0px">Assay for transient gene expression or begin selection for stable transformation</li> </ul> <p><img src="/webroot/web/images/lsr/solutions/technologies/gene_expression/pcr/technology_detail/gxt42_img3.jpg" alt="" width="234" height="393" /></p> </td> <td></td> </tr> <tr class="pd_colorbackground"> <td><strong>Cationic Polymers</strong></td> <td></td> </tr> <tr> <td> <p>Cationic polymers differ from cationic lipids in that they do not contain a hydrophobic moiety and are completely soluble in water. Given their polymeric nature, cationic polymers can be synthesized in different lengths, with different geometry (linear versus branched). The most striking difference between cationic lipids and cationic polymers is the ability of the cationic polymers to more efficiently condense DNA.</p> <p>There are three general types of cationic polymers used in tranfections:</p> <ul> <li style="border:0px">Linear (histone, spermine, and polylysine)</li> <li style="border:0px">Branched</li> <li style="border:0px">Spherical </li> </ul> <p>Cationic polymers include polyethyleneimine (PEI) and dendrimers.</p> <br /></td> <td></td> </tr> <tr class="pd_colorbackground"> <td><strong>DEAE-Dextran</strong></td> <td></td> </tr> <tr> <td> <p>DEAE-dextran is a cationic polymer that tightly associates with negatively charged nucleic acids. The positively charged DNA:polymer complex comes into close association with the negatively charged cell membrane. DNA:polymer complex uptake into the cell is presumed to occur via endocytosis.</p> <p><img src="/webroot/web/images/lsr/solutions/technologies/gene_expression/pcr/technology_detail/gxt42_img4.jpg" alt="" width="426" height="168" /></p> <p><strong>Protocol</strong></p> <p>Solution A: DNA (~1&ndash;5 &micro;g/ml) diluted into 2 ml of growth medium with serum containing chloroquine<br /> Solution B: DEAE-dextran solution (~50&ndash;500 ug/ml)<br /> Solution C: ~5 ml of DMSO<br /> Solution D: Complete growth medium</p> <ul> <li style="border:0px">Add solution A to solution B, then mix gently</li> <li style="border:0px">Aspirate cell medium and apply the mixed A and B solutions to the subconfluent cell culture. Incubate the DNA mixture for ~4 hr; check periodically for cell health</li> <li style="border:0px">Aspirate the supernatant</li> <li style="border:0px">Add solution C to induce DNA uptake</li> <li style="border:0px">Remove DMSO and replace with solution D; assay for transient gene expression</li> </ul> <p><img src="/webroot/web/images/lsr/solutions/technologies/gene_expression/pcr/technology_detail/gxt42_img5.jpg" alt="" width="123" height="419" /></p> </td> <td></td> </tr> <tr class="pd_colorbackground"> <td><strong>Activated Dendrimers</strong></td> <td></td> </tr> <tr> <td> <p>Positively charged amino groups (termini) on the surface of the dendrimer molecule interact with the negatively charged phosphate groups of the DNA molecule to form a DNA-dendrimer complex.</p> <p>The DNA-dendrimer complex has an overall positive net charge and can bind to negatively charged surface molecules on the membrane of eukaryotic cells. Complexes bound to the cell surface are taken into the cell by nonspecific endocytosis. Once inside the cell, the complexes are transported to the endosomes.</p> <ol style="width: 550px;"> </ol> <ul> <li style="border:0px">DNA is protected from degradation by endosomal nucleases by being highly condensed within the DNA-dendrimer complex.</li> <li style="border:0px">Amino groups on the dendrimers that are unprotonated at neutral pH can become protonated in the acidic environment of the endosome. This leads to buffering of the endosome, which inhibits pH-dependent endosomal nucleases.</li> </ul> <ol style="width: 550px;"> </ol> <p style="clear: both;"><img src="/webroot/web/images/lsr/solutions/technologies/gene_expression/pcr/technology_detail/gxt42_img6.jpg" alt="" width="425" height="345" /></p> <p class="caption"><strong>Dendrimer molecule.</strong></p> </td> <td></td> </tr> <tr class="pd_colorbackground"> <td><strong>Magnet-Mediated Transfection</strong></td> <td></td> </tr> <tr> <td> <p>Magnet-mediated transfection uses magnetic force to deliver nucleic acids into target cells. Therefore, nucleic acids are first associated with magnetic nanoparticles. Then, application of magnetic force drives the nucleic acid-particle complexes towards and into the target cells, where the cargo is released.</p> <p><img src="/webroot/web/images/lsr/solutions/technologies/gene_expression/pcr/technology_detail/gxt42_img7.jpg" alt="" width="305" height="328" /></p> <p class="caption"><strong>Magnet-mediated transfection.</strong></p> </td> <td></td> </tr> </tbody> </table> <div class="top"><a href="#helptop">Back to Top</a></div> Transfection Protocols <p> <script type="text/javascript"><!-- // popupwin function popIt(url,w,h,r){ var mydate = new Date(); wname=''+mydate.getMonth()+mydate.getDate()+mydate.getHours()+mydate.getMinutes()+mydate.getSeconds(); if (w && h && r) { popwin = window.open(url,"popwin"+wname,"height="+h+",width="+w+",status=1,scrollbars=1,location=1,menubar=1,resizable"); } else { popwin = window.open(url,"popwin"+wname,"height="+h+",width="+w+",status=1,scrollbars=1,location=0,resizable"); } } // --></script> </p> <p>The transfection protocol online library contains protocols obtained from the literature, developed by Bio-Rad scientists, or submitted by scientists like you. <a onclick="popIt('http://www.bio-rad.com/genetransferprotocols',1300,700);return false" href="#" target="_blank">Browse protocols</a> to view our library and find your starting point or submit a protocol by clicking the proper technology.</p> <div class="top"><a href="#helptop">Back to Top</a></div> Selection Guide <table id="carttablealigned" class="literature_table" style="height: auto; width: 583px;" border="0" cellspacing="0" cellpadding="0"> <tbody> <tr> <td width="100">6179</td> <td width="350">Lipid Transfection Reagents Selection Guide<br /></td> <td class="pdf"><a class="pdf" href="http://www.bio-rad.com/webroot/web/pdf/lsr/literature/Bulletin_6179.pdf" target="_blank"><span>Click to download</span></a></td> </tr> </tbody> </table> 5448 5582 5399 5445 5598 5634 1908 5553 5924 1365 1345 1355 1349 5542 5858 5641 5603 5622 5686 5687 5720 5704 5733 5774 5778 5823 5842 5684 0108 5860 5904 2497 5443 5447 5446 2051 2015 2087 2658 1688 2433 2552 2453 2531 2410 2726 1689 2768 3105 2873 2874 3197 3138_015 3138_005 3138_009 5226 3138_018 3138_017 5439 5370 5807 5808 5894 Life Science Research/Products/Transfection/Lipid Transfection/TransFectin Lipid Reagent ->MT::680dace0-c2a1-451c-ba7f-d15a2294aa52##Life Science Research/Products/Transfection/Lipid Transfection/siLentFect Lipid Reagent for RNAi ->MT::6860e063-0049-4607-95f9-03cae130b221##Life Science Research/Products/Transfection/Electroporation/Gene Pulser Xcell Electroporation Systems ->MT::b1a35eb3-d55c-47b3-aaf3-95e4d1d85848##Life Science Research/Products/Sample Quantitation/TC10 Automated Cell Counter ->MTS::KW3FRJ15##Life Science Research/Products/Transfection/Biolistic Particle Delivery Systems/PDS-1000 | He and Hepta Systems ->MT::1730e08d-f43a-46ea-b7f3-7b35c04c36eb## Life Science Research/Solutions/Technologies/qPCR|Real-Time PCR ->MTS::LUSO4W8UU##Life Science Research/Solutions/Technologies/Cell Counting Methods ->MTS::LUSOLB470##Life Science Research/Solutions/Technologies/Imaging and Analysis/Imaging Systems ->MTS::LUSQCPKSY##Life Science Research/Solutions/Technologies/Western Blotting ->MTS::LUSPPAKG4## Eddie C Chemical & Viral Transfection Methods Learn about chemical transfection methods including liposome-meditated transfection, calcium phosphate, and viral mediated delivery. chemical, transfection, liposome, lipid, viral, transformation 12/29/11 02:07 PM 12/29/21 02:08 PM AE,AI,AL,AM,AR,AT,AU,AZ,BA,BD,BE,BF,BG,BH,BN,BO,BR,BW,CA,CH,CL,CM,CN,CO,CR,CY,CZ,DE,DK,DO,DZ,EC,EE,EG,EH,ER,ES,ET,FI,FM,FO,FR,GA,GE,GF,GH,GP,GR,GT,GU,HK,HN,HR,HT,HU,ID,IE,IL,IN,IS,IT,JM,JO,JP,KE,KH,KR,KW,KZ,LB,LI,LK,LT,LU,LV,MA,MD,MG,MK,ML,MO,MQ,MS,MT,MU,MX,MY,NG,NI,NL,NO,NP,NZ,OM,PA,PE,PF,PG,PH,PK,PL,PR,PS,PT,PW,PY,QA,RO,RS,RU,SA,SB,SE,SG,SI,SK,SN,ST,SV,TG,TH,TN,TO,TR,TT,TW,TZ,UA,UG,UK,US,UY,UZ,VA,VE,VU,XK,YE,ZA en LSR /LSR/Technologies/Transfection N 0
Sign Up for Bio-Rad Updates!
Enter your email address below to receive your choice of the latest news, promotions, and more.